Epidermal growth factor-like modules
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Numerous copies of domains, or modules, with similarity recognizable

from sequence analysis, are being found in a wide variety of different

proteins. New information on the structure and distribution of modules
in the epidermal growth factor superfamily is presented.
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Introduction

The idea that many proteins are constructed from various
modules, each identifiable by a consensus sequence that
is sometimes related to the exon structure of the gene,
is becoming increasingly familiar [1-3]. The epidermal
growth factor (EGF)-like module was one of the earliest
examples of this. It was first characterized and sequenced
in 1972 within EGF itself (see [4] and references therein).
About 10 years later, with the sequencing of its precursor
and the discovery of sequence similarities in regions of
some blood-clotting factors, it became apparent that the

module is widely distributed [5~7]. It is now kiown to
be present in a wide variety of proteins including those
associated with blood coagulation, fibrinolysis, neural de-
velopment and cell adhesion (see Fig. 1).

Despite the relatively long history of this small module,
which usually comprises ~45 residues and three disul-
phide bridges, considerable interest continues to sur-
round its biological role, which mainly seems to be the
mediation of protein—protein interactions. The past year
has yielded much new information in several areas: the
module’s distribution in biological systems, from analysis
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Fig. 1. An illustration of some of the diverse mosaic proteins that have been found to contain EGF modules, mcludmgrhmost of thoss
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of the growing sequence database; its three-dimensional
(3D) structure, from NMR and X-ray studies; and its var-
jous functional roles, by analysis of the effects of gene
mutations. The aim of this brief review is to discuss
these new findings; the reader is referred to several re-
cent reviews for discussion of some of the better known
features of EGF modules [8-12].

Some new EGF modules

As illustrated in Fig. 1, the EGF module is found in
many different kinds of mosaic protein in association
with many different kinds of protein module. During
the review period, several new mosaic proteins contain-
ing the EGF module have been sequenced. It has recently
been discovered, for the first time, in association with an
immunoglobulin superfamily module in the neu differen-
tiation factor [13¢] and with both immunoglobulin and
fibronectin type Il modules in an endothelial cell-surface
tyrosine kinase receptor product of the #e gene [14¢].
Several new examples of EGF-like molecules acting as
growth factors have also been found recently, includ-
ing /in-3, which encodes an inductive signal for vulval
development in Caenorbabditis elegans [15], the spitz
gene, which participates in axis formation and neuroge-
nesis of Drosophila [16], and the heparin-binding (HB)
EGF-like growth factor [17]. Many EGF-like growth fac-
tors have a membrane-bound precursor; in the case of
HB growth factor, it also acts as a receptor for diphthe-
ria toxin (see Fig. 1) [18]. Three other new receptor-like
molecules contain an EGF module which is located at
the carboxyl terminus of the extracellular part adjacent
to the transmembrane region: meprin, a membrane-
bound oligomeric metalloendopeptidase [19¢]; ASGP2,
the membrane-associated component of a cell-surface
sialomucin complex observed in rat mammary adenocar-
cinoma [20°]; and heregulin, which acts as a specific ac-
tivator of the proto-oncogenic tyrosine kinase p185erbB2
[21°]. Analysis of the latter’s sequence revealed an amino-
terminal V-type immunoglobulin-like domain (Fig. 1). A
secreted molecule, gil (giant lens), with a carboxy-termi-
nal EGF module has been recently shown to be involved
in cell determination and axon pathfinding in the visual
system of Drosophbila [22¢].

EGF modules often occur in multiple copies, partic-
ularly in matrix proteins. An example of this is pro-
vided by restrictin, a large multifunctional, tenascin-like
molecule which is implicated in neural cell attachment
[23]. Whereas restrictin and other matrix proteins con-
tain consecutive copies of the EGF module, the architec-
ture of the synaptic neurexin family [24¢] suggests the
duplication of larger units composed of one EGF and
two so-called G domains, which were first identified in
laminin A (Fig. 1).

Comparative sequence analysis of EGF
modules

The examples given above document the steadily increas-
ing number of EGF-like modules in functionally diverse
proteins. One problem is that the more members of a
sequence family that are known, the more difficult it be-
comes to separate this family from non-related proteins.
The six cysteines characteristic of the EGF-like module
are no longer sufficient for unique identification in se-
quence database searches. During the past few years, it
has become apparent that, among identified EGF-like
modules, the number of amino acids between the six
cysteines can vary considerably; not a single region be-
tween successive cysteines is invariant in length. Based
on a comprehensive comparison of many EGF-like mod-
ules (Fig. 2) and some structural constraints (see below),
we propose the following consensus sequence:

xxxxCx,_7Cx;_4(G/A)XCx;_y3ttaxCxCxxGax,_gGxxCx

using the one-letter amino acids code and where a de-
notes aromatic, t non-hydrophobic, and x any amino
acid. Large deviations can occur nevertheless, including
the insertion of as many as 20 amino acids. Using a ‘fuzzy’
description of this consensus and allowing for such de-
viations, more than 600 versions of the EGF module
can be detected in current sequence databases. Taking
into account redundancy (orthologous genes in differ-
ent species, different splicing variants, and other highly
similar domains) still leaves more than 300 different
EGF-like modules in about 70 distinct proteins. This is
a sizeable number considering that not even 3000 differ-
ent animal sequences (species redundancies aside) have
been sequenced so far [25]. The EGF modules has been
detected mostly in animal proteins, but it is also present
in several virus proteins. In addition, a few EGF modules
have been reported in protozoa such as Plasmodium pal-
cifarum, and one recent report describes similarities to
the plant toxin purothionin [26]. One should be cautious
when interpreting the latter similarities, as one or two of
the cysteines are missing in the respective groups of
plant toxins. Most EGF modules have been found in
extracellular proteins, but, surprisingly, they have also
been described in several intracellular peroxidases and
cyclooxidases (for a recent summary, see [27]).

The average pairwise sequence identity between EGF
modules is just over 30%. A dendrogram based on se-
quence similarities (Fig. 2) reveals some information
about the evolution of the module. For example, EGF
modules of proteins with similar modular architecture
(Fig. 1) tend to cluster together. This could reflect func-
tional analogies but might also indicate recent gene-dupli-
cation events. The grouping of multiple copies belonging
to a single protein has also been observed for other mod-
ules, and suggests a preference for further duplications
if 2 module already exists in several consecutive copies.
Even if the dendrogram shown in Fig. 2 is a fairly simple
representation of the relationships among EGF-like mod-
ules, it does indicate the sequences that are highly diver-
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Fig. 2. Dendrogram of 302 EGF mod-
ules. To reduce redundancy, only those
EGF modules with a pairwise sequence
similarity of less than 80% have been
considered. As the pairwise sequence
identities are rather low, the dendro-
gram is not very stable and can only
be considered as a rough indication of
evolutionary relationships. Even so, EGF
modules with the consensus sequence
for calcium binding (see text) cluster to-
gether in two large groups (thick vertical
lines). Some interesting subgroups are
labelled at the right, e.g. the divergence
of the two ECF modules in several clot-
ting factors. For some highly divergent
sequences like those in parasites and
even some of the MAC (membrane at-
tachment complex) proteins, the classifi-
cation of membership in the EGF family
should be reexamined.

clotting factors
domain 1

gent and which might not be typical EGF modules. For
example, all so-called EGF-like repeats in laminins appear
to be outliers (data not shown) and the sequence similar-
ities to EGF might not imply a similar 3D structure. The
repeats in laminins are longer than the average EGF mod-
ule and contain two additional cysteines. In a database
search we have identified only one other protein con-
taining the same repeats, the basal lamina component
agrin [28,29]. Interestingly, agrin contains four copies
of a typical EGF module containing six cysteines (only
these have been identified in the database search) and
two laminin-like repeats containing eight cysteines (Fig.
1) [28,29]. From the known structures of EGF modules,
it can be concluded that the introduction of an additional
disulfide bridge (as observed in the laminin-like repeats)
is likely to introduce significant changes in topology. A
final decision about family membership requires the 3D

structure of this laminin module and superposition on
known EGF structures.

Three-dimensional structures

Good structural information about the EGF module has
been surprisingly difficult to obtain. Until this year, no
crystals suitable for diffraction studies had been pro-
duced and many of the early NMR structures were Of
rather poor quality. New structural information from
NMR studies of EGF, as well as both NMR and X-ray
studies of EGF modules from the blood clotting fac-
tors IX and X have, however, been obtained recently,
giving new structural insight into the module. Some of
the structural information obtained from these studies is
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Fig. 3. A schematic representation of
structural information now available
about the EGF family, as gleaned from
some recent structural work (K Padman-
abhan et al, personal communcation)
[30°¢,37%¢,329,33,34,35¢ 36°,37°°]. A bet-
ter representation of the 3D structures
is obtained by ‘folding’ approximately
along the dotted line. The approximate
extents of the B-sheets are shown and
amino acids found to adopt a helical
conformation in some structures are in-
dicated by an a. The arrows indicate the
exon structure of the gene in factor X
and the amino acid numbering shown is
for factor X; the numbering for factor IX
differs by 1. Some residues which have
been clearly identified as important for
function are indicated in bold.

Fig. 4. Stereo ribbon representation of human EGF [31+¢]. The Cq trace as well as the side chains of the six cysteines involved in disulfide

bridges are also displayed.

illustrated schematically in Fig. 3 and as a stereo diagram
in Fig, 4.

Two relatively high-resolution NMR structures, one of
mouse [30¢¢], the other of human EGF [31e¢], have ap-
peared. Both these structures were derived from more
than 13 restraints per residue, which is a significant
improvement over previously published structures. The
information deduced from these studies can be summa-
rized with reference to Fig. 3. The main structural fea-

ture is a two-stranded B-sheet. Three disulphide bridges
radiate from one surface of this sheet to connect to a
relatively loose amino-terminal strand and loop and to
a carboxy-terminal domain which contains another short
two-stranded sheet. An important feature of the 3D struc-
ture, not illustrated in the diagram in Fig. 3, is the close
contact between the loop immediately after the second
cysteine and the loop just before the sixth cysteine,
This contact is defined by the observation of numer-
ous inter-loop nuclear Overhauser effects; for example,
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human EGF possesses an H-bond between Leul5 and
Arg4l. EGF possesses no very clear hydrophobic core,
and seems to possess considerable conformational flexi-
bility, especially at the amino and carboxyl termini. Flexi-
bility is also suggested by the results of a lower-resolution
NMR study of mouse EGF, which indicated the existence
of slightly different conformations at different pH values
[32¢]. In the structural study of human EGF [31°¢], a ten-
dency for a-helix formation was observed both in the
carboxy-terminal tail, which contains two tryptophans,
and in the loop between the first two cysteine residues
(see Fig. 3). This study also compared the observed struc-
ture with one previously obtained for tissue growth factor
(TGF)-a [33]; the overall structure and the structure of a
surface which might bind the EGF receptor were found
to be very similar in the two molecules (see also below).

The blood clotting factors IX and X each contain two
EGF modules (Fig. 1). The first has, in addition to
the usual EGF consensus sequence, a cOnsensus se-
quence D/N-D/N-D*/N*-Y/F, which leads to B-hydrox-
ylation of the residue marked * (see Fig. 3). Extensive
NMR studies of the first EGF module from both factors
IX and X have been carried out recently using material
produced by proteolytic fragmentation, peptide synthe-
sis and a yeast expression system. For factor IX, early
predictions that the module would bind calcium were
confirmed by monitoring calcium binding by NMR; key
residues involved in the binding site were identified by
mutating the specific residues D, D, Q and B marked in
Fig. 3 (the post-translational modification at the P site is
also discussed below) [34]. The structure of the factor
IX module was shown to be similar to the fold already
observed in EGF [35¢]. The same module from factor
X has been investigated both with and without bound
calcium [36¢,37+¢]. Although bound calcium could not
be observed directly by NMR, it was concluded that the
calcium ligands were the side chains of GIn49, p63 and
possibly Asp46 together with the backbone carbonyls of
Gly47 and Gly64. Because the structures of the apo and
calcium-bound forms are very similar, the effect of cal-
cium binding must be strictly local. Similar results have
been observed with the calcium-bound factor IX module
(M Robin et al, unpublished data).

Numerous attempts to crystallize EGF and EGF modules
have largely been unsuccessful but a factor X molecule
without the Gla domain (the y-carboxyglutamate-contain-
ing domain; see Fig. 1) was crystallized recently and its
structure resolved to 2.5A (K Padmanabhan et al, per-
sonal communication). No electron density was seen
from the first EGF module, presumably because it is
disordered. The second EGF module was resolved. The
loops in this module, especially in the carboxy-terminal
domain, are significantly different in size to those in those
EGF modules whose structures have been determined by
NMR. The structure is nonetheless again very similar, as
illustrated in Fig 3. Close contact between the amino- and
carboxy-terminal domains is again observed and is typi-
fied by the observation of an H-bond between Asp97 and
Cys124. An interesting feature of the X-ray structure is
that the second EGF module appears to make close con-
tact with the catalytic serine-protease domain.

Functional role of EGF modules

There has been a long-term interest in defining the
surface of EGF that might be involved in binding to
the EGF receptor, the goal being the development of
small-molecule agonists or antagonists. So far, the goal
has been elusive. There is general agreement that Arg41l
and Leud7 in EGF are essential for binding, yet these
two residues are at least 17 A apart in the NMR structure
[31e¢]. Efforts to define the surface by site-directed muta-
genesis continue. Koide et al. [38] have shown that mu-
tations in the major B-sheet (at Ala30 and Asn32) cause
a significant decrease in binding. In another study, using
an EGF/endotoxin A chimeric protein, Shiah et al [39]
suggested that positions 19 and 34 were also impor-
tant to receptor binding. Thus it appears that quite a
large surface of EGF might be involved in binding to
the receptor. One possibility is the formation of a 2:1
receptor:EGF complex in which different parts of EGF
binding to the two receptor molecules. Richter et al
[40] have proposed that TGF-o might undergo a rel-
atively large conformational change on binding to the
receptor. As the overall EGF structures are well con-
served even with rather different sequences, and as the
interdomain interface is well defined in solution, this kind
of rearrangement seems unlikely.

Now that a considerable amount of information is avail-
able about the first EGF module of factors IX and X, it
is fruitful to ask questions about their role in the forma-
tion of a blood clotting complex which involves factors
VIII, IX and X as well as calcium and phospholipid. There
is a strong correlation between the ability of various mu-
tant single EGF modules to bind calcium and the clotting
activity of intact factor IX with the same mutations. For
example, in the ‘Alabama’ mutation in factor IX, where
Asp47 is changed to glycine in a haemophilia B pa-
tient, the intact molecule shows reduced clotting activity
and the Ky for calcium binding to the isolated mutant
module is lowered by about 30-fold [41]. In the study
of calcium bound to the EGF module from factor X, it
was pointed out that the calcium is not buried but is ex-
posed to the solvent on one side [37¢¢]. It is probable
that either the neighbouring Gla domain or another pro-
tein contributes other calcium ligands. Many of the EGF-
module family have sequence similarity to the calcium-
binding modules from factors X and IX and are found
in a wide range of proteins (see, for example, [37+*] for
a recent review). It seems certain that calcium is impor-
tant for providing the correct protein-protein interface
in such modules.

An interesting feature of EGF modules in various clotting
and fibrinolysis proteins is their post-translational modifi-
cation. For example, factors VII, IX, X, protein Z and tPA
have been all found to have an O-linked sugar attached to
serine or threonine at the position immediately preced-
ing the second cysteine [42]. Unusual O-linked sugars
have also been observed at a similar position in one of
the three EGF modules in thrombospondin [43]. As men-
tioned above, asparagine or aspartate residues are known
to become hydroxylated at the §§ position in EGF mod-
ules with a consensus tyrosine or phenylalanine in the
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main B-sheet (see, for example, [9] and the factor X
amino-terminal EGF module shown in Fig. 3). It has
recently been observed that substitution of the tyrosine
with valine in factor IX still leads to some B-hydroxylation
(P Handford, personal communication). Recent calcium-
binding studies on isolated amino-terminal EGF modules
from both factors IX and X, with and without B-hydrox-
ylation, have shown that the post-translational modifica-
tion has relatively little effect on calcium-binding affinity
(M Mayhew, M Selander-Sunnerhagen, personal commu-
nication). Thus the biological role of the glycosylation
and hydroxylation of these EGF modules remains uncer-
tain.

Several recent studies have sought to identify particular
EGF modules with a biological function in a variety
of proteins by the study of various mutant forms of
the parent gene. As this database grows and becomes
more precise, it seems likely that most of these results will
be readily interpreted in terms of the known structure of
EGF modules and their ability to mediate protein—protein
interactions via, for example, calcium.

Thrombomodulin is an endothelial cell thrombin recep-
tor which contains six EGF modules. The fifth and sixth
modules have been identified as important for thrombin
binding by module deletion and peptide-competition
experiments [44]. In Drosophila, various genes corre-
sponding to cell-surface molecules containing multiple
EGF modules have been found. These include Notch (36
EGF modules) [45], Delta (nine modules) and Serrate
(14 modules). (Homologues of Notch have been found
in both humans, TAN-1 (46}, and Xenopus, Xotch, see Fig.
1.) Deletion experiments with Nozch identified the 11th
and 12th EGF modules as important for mediating inter-
action between Notch and Deltg [45], and single amino
acid substitutions in EGF modules of Notch and Delta
were found to modify Drosophila development and af-
fect cell adhesion #2 vitro [47).

Members of the selectin family of proteins are found on
lymphocyte cell surfaces and bind to glycoproteins on
endothelial cells. The three main types of selections—P,
E and L—are distinguished by different numbers of C
modules (found in many complement proteins; see Fig,
1). The main interaction with the glycoprotein is prob-
ably mediated by the C-type lectin domain but there is
growing evidence that the EGF module might also be
important [48].

In the nematode C elegans, studies have identified a gip
1 gene which is implicated in cell—cell interactions [49].
This gene has 10 EGF modules as well as other mod-
ules similar to those found in Notch, Loss-of-function
mutants of gip- 1 have been studied and several missense

I[T}*utjations have been mapped to particular EGF modules
9].

Marfan syndrome is a relatively common inherited dis-
ease of connective tissue. The defective protein has re-
cently been identified as fibrillin, a large glycoprotein
~ which contains at least 34 EGF modules [50]. Several
mutations leading to Marfan syndrome have been found
in the EGF modules, including mutations in the consen-

sus cysteine residues and the substitution of an arginine
or proline in the main B-sheet [12,51]. These kinds of
mutation would be expected to disrupt the structure of
the EGF module,

Conclusions

EGF is an interesting example of the growing number
of known modules or ‘superfamilies’. The EGF module
seems to provide a convenient structural scaffold for var-
ious functions, sometimes perhaps as a spacer unit on
cell-surface proteins but mainly associated with specific
protein—protein interactions. No doubt it will be found
in numerous new proteins in the future. The idea that
an identified consensus sequence will have a consensus
structure that can be modelled relatively well has been
strengthened by recent structural studies on different
members of the EGF family. Our knowledge of the EGF
structure now also allows one to make fairly confident
predictions about the likely effects of particular mutations
on function. Increasing information about how module
deletions and residue changes within EGF modules affect
function is beginning to show how amino acids can be
placed on a module surface to petform a variety of tasks
and how EGF modules might, along with other modules
types, contribute to the overall function of the proteins
in which it occurs.
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