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In brief

A machine-learning-based approach
predicts nearly one million new
antibiotics from the global microbiome,
with 79 out of 100 tested peptides being
active in vitro and several showing
efficacy comparable to a clinical
antibiotic in a mouse preclinical model of
infection.
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SUMMARY

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-
learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and
leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and
host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-
redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolu-
tionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed
that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs
against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo.
A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial
activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokary-
otic AMP sequences, an open-access resource for antibiotic discovery.

INTRODUCTION

Antibiotic-resistant infections are becoming increasingly difficult
to treat with conventional therapies.1 Indeed, such infections
currently kill 1.27 million people per year.? Therefore, there is
an urgent need for novel methods for antibiotic discovery.

Computational approaches have recently been developed to
accelerate our ability to identify novel antibiotics, including anti-
microbial peptides (AMPs).>° Recently, proteome mining ap-
proaches have even been developed to identify antimicrobial
agents in extinct organisms in an attempt to further expand our
repertoire of known antimicrobials.'®
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AMPs, found in all domains of life,' '~

(operationally defined here as 10-100 amino acid residues
capable of disturbing microbial growth.'®'> AMPs most com-
monly interfere with cell wall integrity and cause cell lysis.'>'®
Natural AMPs can originate by proteolysis,*'” by non-ribosomal
synthesis, '® or, as we focus on in the present study, they can be
encoded within the genome.'®

Bacteria live in an intricate balance of antagonism and mutu-
alism in natural habitats. AMPs play an important role in modu-
lating such microbial interactions and can displace competitor
strains, facilitating cooperation.?’ For instance, pathogens
such as Shigella spp.,”' Staphylococcus spp.,>* Vibrio chole-
rae,”® and Listeria spp.”**° produce AMPs that eliminate com-
petitors (sometimes from the same species), allowing them to
occupy their niche.

AMPs hold promise as potential therapeutics and have already
been used clinically as antiviral drugs (e.g., enfuvirtide and telapre-
vir®). AMPs that exhibit immunomodulatory properties are
currently undergoing clinical trials,”” as are peptides that may be
used to address yeast and bacterial infections (e.g., pexiganan,
LL-37, and PAC-113). Although most AMPs display broad-spec-
trum activity, some are only active against closely related members
of the same species or genus.”® Such AMPs are more targeted
agents than conventional broad-spectrum antibiotics.®%>' Further-
more, contrary to conventional antibiotics, the evolution of resis-
tance to many AMPs occurs at low rates and is not related to
cross-resistance to other classes of widely used antibiotics.*>>%*

The application of metagenomic analyses to the study of
AMPs has been limited due to technical constraints, primarily
stemming from the challenge of distinguishing genuine protein-
coding sequences from false positives.>* Therefore, the sig-
nificance of small open reading frames (smORFs) has been his-
torically overlooked in (meta)genomic analyses.*>" In recent
years, significant progress has been made in metagenomic ana-
lyses of human-associated smORFs.%® These advancements
have incorporated machine learning (ML) techniques to identify
smORFs encoding proteins belonging to specific functional cat-
egories.>*™*? Notably, a recent study used predicted smORFs to
uncover approximately 2,000 AMPs from metagenomic samples
of human gut microbiomes.® Nevertheless, it is important to note
that the human gut represents only a fraction of the overall micro-
bial diversity, suggesting that there remains an immense poten-
tial for the discovery of AMPs from prokaryotes in the diverse
range of habitats across the globe.

In this study, we employed ML to predict and catalog AMPs
from the global microbiome as currently represented in public
databases. By computationally exploring 63,410 publicly avail-
able metagenomes and 87,920 high-quality microbial geno-
mes,*® we uncovered a vast array of AMP diversity. This resulted
in the creation of the AMPSphere, a collection of 863,498 non-
redundant peptide sequences, encompassing candidate AMPs
(c_AMPs) derived from (meta)genomic data. Remarkably, the
majority of these c_AMP sequences had not been previously
described. Our analysis revealed that these c_AMPs were spe-
cific to particular habitats and were predominantly not core
genes in the pangenome.

Moreover, we synthesized 100 c_AMPs from AMPSphere and
found that 79 were active, with 63 exhibiting antimicrobial activ-

are short sequences
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ity in vitro against clinically significant ESKAPEE pathogens,
which are recognized as public health concerns.***° These pep-
tides were further compared to encrypted peptides (EPs), which
are peptide sequences hidden in protein sequences and mined
computationally,”'® and demonstrated their ability to target bac-
terial membranes and their propensity to adopt a-helical and
B-structures. Notably, the leading candidates displayed prom-
ising anti-infective activity in a preclinical animal model.
Together, our work demonstrates the ability of ML approaches
to identify functional AMPs from the global microbiome.

RESULTS

AMPSphere comprises almost 1 million c_AMPs from
several habitats

AMPSphere incorporates c_AMPs predicted with ML using Ma-
crel,*? a pipeline that uses random forests to predict AMPs from
large peptide datasets with an emphasis on precision over recall.
It was applied to 63,410 globally distributed publicly available
metagenomes (Figure 1A; Table S1) and 87,920 high-quality bac-
terial and archaeal genomes.*® Sequences present in a single
sample were removed,*? except when they had a significant ma-
tch (defined as amino acid identity >75% and E-value <10®)toa
sequence in the AMP-dedicated database Data Repository of
Antimicrobial Peptides (DRAMP) version 3.0.%® This resulted in
5,518,294 genes, 0.1% of the total predicted smORFs, coding
for 863,498 non-redundant c_AMPs (on average 37 + 8 residues
long; Figures 1Aand S1). Similar to validated sequences with anti-
microbial activity,”>*"*® c_AMPs from AMPSphere present a
positive charge (4.7 + 2.6), high isoelectric point (10.9 + 1.2), am-
phiphilicity (hydrophobic moment, 0.6 + 0.1), and a potential to
bind to membranes or other proteins (Boman index, 1.14 + 1.1).
As expected, in general, the distribution of physicochemical
properties of peptides from AMPSphere, DRAMP*® version 3.0,
and the positive training dataset used in Macrel*? are more similar
to each other than to the negative training set (assumed to not be
AMPs). Nonetheless, c_AMPs from AMPSphere are on average
longer (37 + 8 residues) than those in DRAMP*® version 3.0
(28 + 22 residues), and we observed differences in the distribution
of other features (e.g., charge, aliphaticity, amphipathicity, and
isoelectric point; Figure S1).

We subsequently estimated the quality of the smORF predic-
tions and detected 20% (172,840) of the c_AMP sequences in
independent publicly available metaproteomes or metatran-
scriptomes (Figures 2 and S2A; see STAR Methods section
“Quality control of c_AMPs”) belonging to several habitats
included in the AMPSphere, such as the human gut, plants,
and others (Table S6). We then subjected all c_AMPs to a bundle
ofin silico quality tests (see STAR Methods section “Quality con-
trol of c_AMPs"). A subset of c_AMPs (9.2% or 80,213 c_AMPs)
passed all of them, and this subset is hereafter designated
as high-quality. Testing with other AMP prediction systems
(AMPScanner v2,°° the model for mature peptides in ampir,*°
amPEPpy,** APIN,>® AI4AMP,*® and AMPLIify°’), we observed
that 98.4% (849,703 peptides) of AMPSphere c_AMPs were
also predicted as AMPs by at least one other AMP prediction
system. Approximately 15% (132,440 out of 863,498 peptides)
of AMPSphere c_AMPs were co-predicted by all methods used.
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Figure 1. AMPSphere comprises 836,498 non-redundant c_AMPs from thousands of metagenomes and high-quality microbial genomes
(A) To build the AMPSphere, we first assembled 63,410 publicly available metagenomes from diverse habitats. A modified version of Prodigal,®* which can also
predict smORFs (30-300 bp), was used to predict genes on the resulting metagenomic contigs as well as on 87,920 microbial genomes from ProGenomes2.**
Macrel*? was applied to the 4,599,187,424 predicted smORFs to obtain 863,498 non-redundant c_AMPs (see also Figure S1). c_AMPs were then hierarchically
clustered in a reduced amino acid alphabet using 100%, 85%, and 75% identity cutoffs. We observed 118,051 non-singleton clusters at 75% of identity, and
8,788 of them were considered families (>8 c_AMPs).

(B) Only 9% of c_AMPs have detectable homologs in other small protein databases (SmProt 2,*° STSORFs®’), bioactive peptide databases (DRAMP*® version 3.0,
starPepDB 45k°"), and general protein datasets (GMGCv1°?; see also Figure S2B). Also shown is the number of homologs in the AMPSphere in each database as
well as the total. The number of homologs passing all of our quality tests regardless of their experimental evidence of translation/transcription is also shown along
with the percentage it represents in the homologs identified. Note that some peptides have homologs in multiple databases and thus the total count is not the sum
of the individual databases.

(C) Shown are rarefaction curves showing how AMP discovery is impacted by sampling, with most of the habitats presenting steep sampling curves.

(D) Sharing of c_AMPs between habitats is limited. The width of ribbons represents the proportion of the shared c_AMPs in the habitat on the left. See also
Figures S2C and S2D and Tables S1 and S2.

Only 0.7% of the identified c_AMPs (6,339 peptides) are ho-  sent from protein databases not specific to AMPs (Figure 1B),
mologous (operationally defined as amino acid identity >75%  such as the Small Proteins database (SmProt2)*° or the Glo-
and E-value <107%) to experimentally validated AMP sequences bal Microbiome Gene Catalog of canonical-length proteins
in DRAMP version 3.0.%° Moreover, most c_AMPs were also ab-  (GMGCv1),°? suggesting that c_AMPs represent a region of
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peptide sequence space that is not present in these other data-
bases. In total, we could find only 73,774 (8.5%) c_AMPs with
homologs in any of the databases we considered. High-quality
c_AMPs were detected in public databases at a higher fre-
quency than general c_AMPs (2.5-fold, phypergom. = 4.2 X
1072%% Figure 1B), with 23,012 out of the 80,213 high-quality
c_AMPs having a match in another database. However, it is
notable that 76.4% (4,843 peptides out of 6,339) of those
¢_AMPs that have a homolog in DRAMP*® version 3.0 (and,
therefore, are highly likely to be functional) are not high-quality
¢_AMPs. Thus, while our quality tests do enrich for validated se-
quences, a failure to pass the tests is not a sufficient reason to
conclude that the sequence is not active.

To put c_AMPs in an evolutionary context, we hierarchically
clustered peptides using a reduced amino acid alphabet of 8 let-
ters.® The three sequence clustering levels adopted identity cut-
offs of 100%, 85%, and 75% (Figure S3). At the 75% identity
level, we obtained 521,760 protein clusters, of which 405,547
were singletons, corresponding to 47% of all c_AMPs from
AMPSphere. A total of 78,481 (19.3%) of these singletons were
detected in metatranscriptomes or metaproteomes from various
sources, indicating that they were not artifacts. The large number
of singletons suggests that most c_AMPs originated from pro-
cesses other than diversification within families, which is the
opposite of the hypothesized origin of full-length proteins, in
which singleton families are rare.>® The 8,788 clusters with >8
peptides obtained at 75% of identity are hereafter named “fam-
ilies,” as in Sberro et al.*® Among them, we considered 6,499 as
high-quality families because they contained evidence of trans-
lation or transcription or because >75% of their sequences
pass all in silico quality tests, regardless of whether experimental
evidence is available (see STAR Methods section “AMP fam-
ilies”). These high-quality families span 15.4% of the AMP-
Sphere (133,309 peptides).

All the c_AMPs predicted here can be accessed at https://
ampsphere.big-data-biology.org/. Users can retrieve the peptide
sequences, ORFs, and predicted biochemical properties of each
c_AMP (e.g., molecular weight, isoelectric point, and net charge
at pH 7.0). We also provide the distribution across geographical
regions, habitats, and microbial species for each c_AMP.
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Figure 2. Quality control of AMPSphere can-
didates

(A) The number of AMPSphere candidates passing
each of the tests proposed for quality is shown. The
high-quality set is composed of 7.3% of candidates
without experimental evidence and 2% of candi-
dates with evidence of their translation or tran-
scription, as well as the number of homologs found
in the high-quality set of AMP candidates. Although
the high-quality set displays some overlap with the
homologs, most of the homologs are not found in the
high-quality set.

(B) The number of AMP candidates co-predicted by
AMP prediction systems beyond Macrel (AMPS-
canner v2,°° ampir’® with the model for mature
peptides, amPEPpy,>* APIN®® with their proposed
model, AI4AMP,*® and AMPLIfy®’). Only a small
portion of AMPSphere (<2%) cannot be co-pre-
dicted by any system other than Macrel.*?

c_AMPs are rare and habitat-specific

The AMPSphere spans 72 different habitats, which were classi-
fied into eight high-level habitat groups, e.g., soil/plant (36.6% of
¢_AMPs in AMPSphere), aquatic (24.8%), and human gut (13%;
Figure 1A; Table S2). Most of the habitats, except for the human
gut, appear to be far from saturated in terms of discovered
¢_AMPs (Figure 1C). In fact, most AMPs are rare (median number
of detections is 99, or 0.17% of the dataset; when restricted to
high-quality c_AMPs, the median number of detections is 81,
or 0.14% of the dataset), with 83.97% being observed in <1%
of samples (Figure S2). Only 10.8% (93,280) of c_AMPs were de-
tected in more than one high-level habitat group (henceforth
termed “multi-habitat c_AMPs”); this fraction is 7.25-fold smaller
than would be expected by a random assignment of habitats to
samples (Ppermutation < 107°°%; see STAR Methods section
“Multi-habitat and rare c_AMPs”). Even within high-level habitat
groups, c_AMPs overlap between habitats much less frequently
than expected by chance (2.4-192-fold less, Ppermutation < 5.4 X
1075 see STAR Methods section “Testing c_AMPs overlap
across habitats”; Figure 1D).

Mutations in larger genes generate c_AMPs as
independent genomic entities

Many AMPs are generated post-translationally by the fragmen-
tation of larger proteins.’” For example, EPs are computationally
detected fragments from protein sequences within the human
proteome and other proteomes that have been shown to be
highly active.”'° EPs present diverse secondary structures and
act on the membrane of bacterial cells similarly to known natural
AMPs but have different physicochemical features compared to
known AMPs.**® AMPSphere only considered peptides en-
coded by dedicated genes. Nonetheless, we hypothesized that
some of these have originated from larger proteins by fragmen-
tation at the genomic level. To explore this, we aligned the
AMPSphere c_AMPs to the full-length proteins in GMGCv1°?
and observed that about 7% (61,020) of them are homologous
to a canonical-length protein (Figure 1B), with 27% of these
hits sharing the start codon with the longer protein. This sug-
gests early termination of full-length proteins as one mechanism
for generating novel c_AMPs (Figures 3A and 3B).
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Figure 3. Mutations in genes encoding la-
rge proteins generate c_AMPs as indepen-
dent genomic entities

(A) The distribution of positions (as a percentage of
the length of the larger protein) from which the
AMP homologs start their alignment is shown.
About 7% of c_AMPs are homologous to proteins
from GMGCv1,°? with approximately one-fourth of
the hits having the same start position as the larger
protein.

(B) As an illustrative example of an AMP homolo-
gous to a full-length protein, AMP10.271_016 was
recovered from three samples of human saliva
from the same donor.”® AMP10.271_016 is pre-
dicted to be produced by Prevotella jejuni, sharing
the start codon (bolded) of an NAD(P)-dependent
dehydrogenase gene (WP_089365220.1), the
transcription of which was stopped by a mutation
(inred; TGG > TGA).

(C) The distribution of AMPs per OG class (left) and
their enrichment in comparison to full-length pro-
teins from GMGCv1°? (right). OGs were classified
into subgroups according to the number of c_
AMPs they were affiliated with. The OGs of un-
known function represent the largest (2,041 out of
3,792 OGs) and most enriched (Dkruskal = 2.66 X
107%) class with homologs to c_AMPs in
GMGCV1.*? Interestingly, when considered indi-
vidually, the number of c_AMP hits to unknown
OGs was the lowest (Pkruskal = 6 X 107%). These
results do not change when underrepresented
OGs are excluded by using different thresholds
(e.g., atleast 10, 20, or 100 homologs per OG). See
also Table S3.
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To investigate the function of the full-length proteins homolo-
gous to AMPs, we mapped the matching proteins from
GMGCv1*? to orthologous groups (OGs) from eggNOG 5.0.°°
We identified 3,792 (out of 43,789) OGs significantly enriched
(PHypergeom. < 0.05, after multiple hypothesis corrections with
the Holm-Sidak method) among the hits from AMPSphere.
Although OGs of unknown function comprise 53.8% of all iden-
tified OGs, when considered individually, these OGs are on
average smaller than OGs in other categories. Thus, despite
each OG having a relatively small number of c_AMP hits, when
compared to the background distribution of the OGs in
GMGCv1,°? OGs of unknown function were the most enriched
among the c_AMP hits, with an average enrichment of 10,857-
fold (Pmann < 3.9 x 10~%; Figure 3C; Table S3).

c_AMP genes may arise after gene duplication events
We next raised the question of whether c_. AMPs would be pre-
dominantly present in specific genomic contexts. To investigate
the functions of the neighboring genes of the c_AMPs, we map-
ped them against 169,484 genomes included in a recent study.®’
Atotal of 38.9% (21,465 out of 55,191) of c_AMPs with more than
two homologs in different genomes in the database showed
phylogenetically conserved genomic context with genes of
known function (see STAR Methods section “Genomic context
conservation analysis”). This holds true for curated versions of
the catalog: 35.32% of high-quality c_AMPs and 32.06% of
high-quality c_AMPs with experimental evidence show
conserved genomic neighbors. These conservation values are
similar to that of 3,899,674 gene families with more than two ho-
mologs calculated de novo on the gene catalog (34.4%), indi-
cating that the genomic location of c_AMPs is not random.

Despite being involved in similar processes, c_AMPs were
generally depleted from conserved genomic contexts involving
known systems of antibiotic synthesis and resistance, even
when compared to small protein families (Figure 4). Instead,
we found that c_AMPs are encoded in conserved genomic con-
texts with ribosomal genes (23.6%) at a higher frequency than
other gene families (4.75%; Figure 4A; Table S4).

Most of the c_AMPs (2,201 out of 2,642) in a conserved
context with ribosomal subunits are homologous to ribosomal
proteins (Figure 4D), congruent with the observation that in
some species, ribosomal proteins have antimicrobial prope-
rties.®” Seventy-seven c_AMPs homologous to ribosomal pro-
teins were also homologous to a ribosomal gene in their immedi-
ate vicinity (up to 1 gene up/downstream). This phenomenon is
not exclusive to ribosomal proteins: 1,951 c_AMPs can be anno-
tated to the same KEGG Orthologous Group (KO) as some of
their immediate neighbors and may have originated from gene
duplication events. This shared annotation was interpreted in
this context as evidence for a common evolutionary origin and
not as a functional prediction for the c_AMPs. These duplications
may have arisen by recombination of flanking homologous se-
quences, which can happen during cell division.®*° Interest-
ingly, 1,635 (83.8%) of these c_AMPs are located upstream of
the neighbor with the same KO annotation. Different permeases
and transposases are the most common KOs assigned to
¢_AMPs and their neighbors (400 and 125 c_AMPs, respectively;
see Table S5).
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Most ¢ AMPs are members of the accessory
pangenome

We observed that only a small portion (5.9%, Ppermutation = 4.8 X
1073, Nspecies = 416) of c_AMP families present in Pro-
Genomes2*® are contained in >95% of genomes from the
same species (Figure 5), here referred to as “core.”®® This is
consistent with previous work, in which AMP production was
observed to be strain-specific.®” In contrast, a high proportion
(circa 68.8%) of full-length protein families are core in Pro-
Genomes2*°® species. There is a 1.9-fold greater chance (Orisher =
2.2 x 1079 that a pair of genomes from the same species
share at least one c_AMP when they belong to the same strain
(99.5% < ANI <99.99%).

One example of this strain-specific behavior is AMP10.018_
194, the only c_AMP found in Mycoplasma pneumoniae ge-
nomes. M. pneumoniae strains are traditionally classified into
two groups based on their P1 adhesin gene.”” Of the 76
M. pneumoniae genomes present in our study, 29 were classified
as type-1, 29 were classified as type-2, and the remaining 18
were undetermined in this classification system’' (see STAR
Methods section “Determination of accessory AMPs”). Twe-
nty-six of the 29 type-2 genomes contain AMP10.018_194, as
did 2 undetermined type genomes, but none of the type-1 ge-
nomes contain this AMP.

More transmissible species have lower c_AMP density
We investigated the taxonomic composition of AMPSphere by
annotating contigs with the Genome Taxonomy Database
(GTDB) taxonomy®®%° (see STAR Methods section “c_AMP den-
sity in microbial species”), which resulted in 570,187 c_AMPs
being annotated to a genus or species. The genera contributing
the most c_AMPs to AMPSphere were Prevotella (18,593 c_
AMPs), Bradyrhizobium (11,846 c_AMPs), Pelagibacter (6,675
c_AMPs), Faecalibacterium (5,917 c_AMPs), and CAG-110
(5,254 c_AMPs; see Figure 5). This distribution reflects the fact
that these genera are among those that contribute the most
assembled sequences in our dataset (all occupying percentiles
above 99.75% among the assembled genera). Therefore, we
calculated the c_AMP density (pyp) by determining the number
of c_AMP genes per megabase pairs of assembled sequence.
To avoid bias due to the unequal sampling of habitats, we
included all the sequences predicted by Macrel’? in each sam-
ple, including singleton sequences that were subsequently
removed and are not part of AMPSphere.

To further explore the importance of AMP production in
ecological processes, we investigated the role of AMPs in the
mother-to-child transmissibility of bacterial species in a recently
published paper’? by correlating the pp for each bacterial spe-
cies to the published measures of microbial transmission. Hu-
man gut bacteria showed increased transmissibility at lower
AMP densities (Rspearman = —0.42, Proim-sidak = 3.4 X 1072,
Nspecies = 43). Similarly, in human oral microbiome bacterial spe-
cies, transmissibility from mother to offspring is consistently
inversely correlated with their pyyp for the first year (Rspearman =
—0.55, Prom-sidak = 1.4 X 1073, Ngpecies = 41). This suggests that
human gut bacteria and oral microbiome bacterial species show
increased transmissibility at lower py,,». Moreover, it highlights
the potential influence of p4e on the transmissibility of gut and
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Figure 4. The genome context of c_AMPs shows a preference for neighborhoods containing ribosome assembly proteins
(A) Compared to other proteins, c_AMPs in conserved genomic architectures tend to be closer to ribosomal-machinery-related genes than families of proteins

with different sizes (all length and small proteins with <50 amino acids).

(B) The proportion of c_AMPs in a genome context involving antibiotic resistance genes is lower than in other gene families.

(C) The proportion of c_AMPs in neighborhoods with antibiotic-synthesis-related genes is very small (<0.25%).

(D) The conserved genomic context of the gene encoding AMP10.015_426 is shown in different genomes (the tree on the left depicts the phylogenetic relationship
of the genes homologous to it). This c_AMP is homologous to the ribosomal protein rpsH and is found in the context of rpsH and other ribosomal protein genes.

See also Table S4.

oral microbiota, suggesting a link between AMPs and the trans-
mission success rates of microbial species.

Physicochemical features and secondary structure

of AMPs

To investigate the properties and structure of the synthesized
peptides, we first compared their amino acid composition to
AMPs from available databases of experimentally verified se-
quences (DRAMP“® version 3.0, Database of Antimicrobial Activ-
ity and Structure of Peptides [DBAASP],”® and Antimicrobial
Peptides Database [APD]”“ version 3). Overall, the composition
was similar, as was expected, given that Macrel’s ML model
was trained using known AMPs.*> Notably, AMPSphere se-
quences displayed a slightly higher abundance of aliphatic
amino acid residues, specifically alanine and valine. However,
these AMPSphere sequences consistently differed (Figure 6A)
from EPs.*'%*® The resemblances in amino acid composition
between the identified c_AMPs and known AMPs suggested
similar physicochemical characteristics and secondary struc-
tures, both of which are recognized for their influence on antimi-
crobial activity.'® The c_AMPs exhibited comparable hydropho-

bicity, net charge, and amphiphilicity to AMPs sourced from
databases (Figure S1). Furthermore, they displayed a slight pro-
pensity for disordered conformations (Figure 6B) and had a lower
net positive charge compared to other EPs (Figure 6A).

To evaluate the structural and antimicrobial properties of
c_AMPs from AMPSphere, we first filtered the AMPSphere for
peptides that were predicted as suitable for in vitro assays due
to their solubility in aqueous solution and ease of chemical syn-
thesis. We chose a set of high-quality AMPs with 50 peptide se-
quences based on their prevalence and taxonomic diversity (see
STAR Methods section “Peptide selection for synthesis and
testing”). Additionally, to provide an unbiased evaluation of the
peptides we report here, we first excluded any peptides with a
homolog in one of the published databases and then randomly
selected 50 additional peptides from the AMPSphere, including
25 peptides with AMP probabilities of at least 0.6 (as reported by
Macrel’?) and 25 peptides with lower probabilities (0.5-0.6).

Subsequently, we conducted experimental assessments of
the secondary structure of the active c_AMPs using circular di-
chroism (Figures 6B and S4). Similar to AMPs documented in da-
tabases, peptides derived from AMPSphere exhibited different
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Figure 5. AMP variation in AMPSphere database is taxonomy-dependent

(A) Shown are the fractions of AMPs (or AMP families) that are accessory (present in <50% of genomes from same species), shell (50%-95%), or core (=>95%).
(B) Distribution of the lowest taxonomic level at which c_AMPs were annotated. In detail (right) are the top 10 genera with the highest numbers of c_AMPs included
in AMPSphere. Animal-associated genera (e.g., Prevotella, Faecalibacterium, and CAG-110) contribute the most c_AMPs, possibly reflecting data sampling.
(C) Using the payp per genus (calculated with c_AMPs in AMPSphere), we observed the distribution of c_AMPs per phylum, with Bacillota A as the densest (the

number of samples used to build the graph is shown above each box).
(D) Taxonomy of the detected taxa in AMPSphere is shown using the GTD

g68.69

reference tree. The gray bars show py,,p distribution with respect to taxonomy,

with black bars representing the confidence interval of 95%. Bacillota A, Actinomycetota, and Pseudomonadota are the densest phyla in c_AMPs. As areference,
the median of p4,p for the presented genera is indicated by a magenta dashed line.

propensities for adopting a-helical structures; also, some of
them were unstructured or adopted B-antiparallel conformations
in all media analyzed. Notably, they also displayed an unusually
high content of B-antiparallel structures in both water and meth-
anol/water mixtures (Figure 6B) despite their amino acid compo-
sition similarities to AMPs and EPs. We attribute these findings to
the slightly elevated occurrence of alanine and valine residues,
which are known to favor B-like structures with a preference
for B-antiparallel conformation.”®

Validation of c_ AMPs as potent antimicrobials through

in vitro assays

Next, we tested the 100 synthesized peptides against 11 clini-
cally relevant pathogenic strains encompassing Acinetobacter
baumannii, Escherichia coli (including one colistin-resistant
strain), Klebsiella pneumoniae, Pseudomonas aeruginosa, Stap-
hylococcus aureus (including one methicillin-resistant strain),
vancomycin-resistant Enterococcus faecalis, and vancomycin-
resistant Enterococcus faecium. Our initial screening revealed
that 63 AMPs (out of 100 synthesized) completely eradicated
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the growth of at least one of the pathogens tested (Figure 6C).
Remarkably, in some cases, the AMPs were active at concentra-
tions as low as 1 umol L™, close to the peptide antibiotic poly-
myxin B and the antibiotic levofloxacin that were used as positive
controls in all experiments (Figure S4A). The Gram-negative bac-
teria A. baumannii and E. coli, as well as the Gram-positive van-
comycin-resistant strains E. faecalis and E. faecium, displayed
higher susceptibility to the AMPs, with 39, 24, 21, and 26 peptide
hits, respectively. However, none of the tested AMPs affected
methicillin-resistant S. aureus (MRSA) (Figure 6C). We also syn-
thesized and tested the scrambled versions of five of the most
active peptides from the high-quality group for antimicrobial ac-
tivity (i.e., actinomycin-1, enterococcin-1, lachnospirin-1, prote-
obacticin-1, and synechocucin-1). All scrambled versions were
inactive except for lachnospirin-1_scrambled, which presented
modest activity against A. baumannii at 32 pmol L™ (16 times
higher concentration compared to its parent peptide lachno-
spirin-1; Figure S5A). These results underscore the importance
of the specific sequence of these peptides to exert their antimi-
crobial activity. To further explore the influence of sequence on
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Figure 6. Amino acid composition, structure, antimicrobial activity, and mechanism of action of c_ AMPs

(A) Amino acid frequency in c_AMPs from AMPSphere, AMPs from databases (DRAMP“® version 3, APD3,”* and DBAASP’°), and encrypted peptides* (EPs) from
the human proteome.

(B) Heatmap with the percentage of secondary structure found for each peptide in three different solvents: water, 60% trifluoroethanol (TFE) in water, and 50%
methanol (MeOH) in water. Secondary structure was calculated using BeStSel server.”®

(C) Activity of c_AMPs assessed against ESKAPEE pathogens and human gut commensal strains. Briefly, 10° CFU mL~" was exposed to c_AMPs 2-fold serially
diluted ranging from 64 to 1 umol L~ in 96-well plates and incubated at 37 °C for one day. After the exposure period, the absorbance of each well was measured
at 600 nm. Untreated solutions were used as controls, and minimal concentration values for complete inhibition were presented as a heatmap of antimicrobial
activities (umol L~ ") against 11 pathogenic and eight human gut commensal bacterial strains. All the assays were performed in three independent replicates, and
the heatmap shows the mode obtained within the 2-fold dilution concentration range studied. Gram-positive (+) and Gram-negative (—) bacteria are indicated as
such (top).

(legend continued on next page)
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structure, we assessed the secondary structure tendency of the
scrambled peptides using circular dichroism. We noticed a
decrease in helical fraction for sequences with higher helical
content (enterococcin-1, lachnospirin-1, and synechocucin-1),
while the predominately random coiled sequences actinomy-
cin-1 and proteobactin-1, as well as their scrambled counter-
parts, showed similar secondary structural sequences in all
media analyzed (Figures S5B-S5E). These results suggest a
lack of correlation between secondary structure and antimicro-
bial activity of the AMPs derived from AMPSphere.

The growth of human gut commensals is impaired
by ¢ AMPs
We screened the AMPs against eight of the most relevant mem-
bers of the human gut microbiota associated with human
health.””®" We tested commensal bacteria belonging to four
phyla (Verrucomicrobiota, Bacteroidota, Actinomycetota, and
Bacillota), i.e., Akkermansia muciniphila, Bacteroides fragilis,
Bacteroides thetaiotaomicron, Bacteroides uniformis, Phocaei-
cola vulgatus (formerly Bacteroides vulgatus), Collinsella aerofa-
ciens, Clostridium scindens, and Parabacteroides distasonis.
While it is commonly observed that known natural AMPs do
not target microbiome strains,®” our study found that 58 of the
synthesized AMPs (58%) demonstrated inhibitory effects on at
least one commensal strain at low concentrations (8-16 umol
L™"). Although this concentration range was higher than that
observed for the most active peptides against pathogens (1-
4 umol L7, it still falls within the highly active range of AMPs
based on previous studies®*~®° (Figure 6C). Interestingly, all the
analyzed gut microbiome strains were susceptible to at least
four c_AMPs, with strains of A. muciniphila, B. uniformis,
P. vulgatus, C. aerofaciens, C. scindens, and P. distasonis exhib-
iting the highest susceptibility. In total, 79 AMPs (out of 100 syn-
thesized peptides) demonstrated antimicrobial activity against
pathogens and/or commensals. We also screened scrambled
sequences of five of the highly active peptides from the high-
quality group against gut commensals. Similarly to the results
obtained against pathogenic strains (Figure S5), only lachno-
spirin-1_scrambled was modestly active against C. scindens at
64 pmol L~ (Figure S5A).

Permeabilization and depolarization of the bacterial
membrane by c_ AMPs from AMPSphere

To gain insights into the mechanism of action responsible for the
antimicrobial activity observed in the peptides derived from
AMPSphere (Figure 6C), we conducted experiments to assess
their ability to permeabilize and depolarize the outer and cyto-
plasmic membranes of bacteria at their minimum inhibitory con-
centrations (MICs). Specifically, we investigated the effects of all
39 peptides that showed activity against A. baumannii (Figures
6D and 6E) and 6 peptides with antimicrobial activity on
P. aeruginosa (Figures S6A and S6B). For comparison and as a
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control, we used polymyxin B, a peptide antibiotic known for
its membrane permeabilization and depolarization proper‘cies.4

Toinvestigate the potential permeabilization of the outer mem-
branes of Gram-negative bacteria by the selected AMPs, we
conducted 1-(N-phenylamino)naphthalene (NPN) uptake as-
says. NPN is a lipophilic fluorophore that exhibits increased fluo-
rescence in the presence of lipids found within bacterial outer
membranes. The uptake of NPN indicates membrane permeabi-
lization and damage. Among the 39 peptides evaluated for
activity against A. baumannii, 10 peptides caused significant
permeabilization of the outer membrane, resulting in fluores-
cence levels at least 50% higher than that of polymyxin B (Fig-
ure 6D) after 45 min of exposure. In the case of P. aeruginosa
cells, four out of the six tested peptides showed higher permea-
bilization than polymyxin B (Figure S6A).

To evaluate the potential membrane depolarization effect of
the selected AMPs from AMPSphere, we utilized the fluorescent
dye 3,3'-dipropylthiadicarbocyanine iodide (DiSCs-[5]). Among
the peptides tested against A. baumannii, bogicin-1 (AMP10.
364_543), ampspherin-2 (AMP10.615_023), and marinobacti-
cin-1 (AMP10.321_460) exhibited greater cytoplasmic mem-
brane depolarization than polymyxin B, and among the ones
tested against P. aeruginosa, all peptides tested exhibited
greater cytoplasmic membrane depolarization than polymyxin
B (Figure 6B). Interestingly, all the tested AMPSphere peptides
displayed a characteristic crescent-shaped depolarization
pattern compared to polymyxin B, with lower levels of depolari-
zation observed during the first 20 min of exposure followed by
an increase in depolarization over time (Figures 6E and SEB).
Taken together, these results indicate that the kinetics of cyto-
plasmic membrane depolarization are slower compared to the
kinetics of outer membrane permeabilization, which occurs
rapidly upon interaction with the bacterial cells.

Our findings indicate that the tested AMPs from AMPSphere
primarily exert their effects by permeabilizing the outer mem-
brane rather than depolarizing the cytoplasmic membrane,
revealing a similar mechanism of action to that observed for clas-
sical AMPs and EPs from the human proteome.”

AMPs exhibit anti-infective efficacy in a mouse model

Next, we tested the anti-infective efficacy of AMPSphere-
derived peptides in a skin abscess murine infection model (Fig-
ure 7A). Mice were subjected to infection with A. baumannii, a
dangerous Gram-negative pathogen known for causing severe
infections in various body sites including the bloodstream, lungs,
urinary tract, and wounds.® Ten lead AMPs from different sour-
ces displayed potent in vitro activity against A. baumannii:
synechocucin-1 (AMP10.000_211, 8 umol L~") from Synecho-
coccus sp. (coral-associated, marine microbiome); proteobacti-
cin-1 (AMP10.048_551, 16 pmol L") from Pseudomonadota
(plant and soil microbiome); actynomycin-1 (AMP10.199_072,
64 pmol L") from Actinomyces (human mouth and saliva

(D) Fluorescence values relative to polymyxin B (PMB, positive control) of the fluorescent probe 1-(N-phenylamino)naphthalene (NPN) that indicate outer

membrane permeabilization of A. baumannii ATCC 19606 cells.

(E) Fluorescence values relative to PMB (positive control) of 3,3’ -dipropylthiadicarbocyanine iodide (DiSC3-[5]), a hydrophobic fluorescent probe used to indicate
cytoplasmic membrane depolarization of A. baumannii ATCC 19606 cells. Depolarization of the cytoplasmic membrane occurred with slow kinetics compared to
the permeabilization of the outer membrane and took approximately 20 min to stabilize.

3770 Cell 187, 3761-3778, July 11, 2024



Cell

{

Tissue
collection

? é CFU counts

Treatment

Infection

140,

— Control

-
N
o

y in-1 (8 pmol L")
— proteobacticin-1 (16 pmol L)
— actinomycin-1 (64 ymol L")
enterococcin-1 (1 pmol L)
— lachnospirin-1 (2 ymol L")
— alphaprotecin-1 (1 pmol L)
— oscillospirin-1 (8 pmol L)
— ampspherin-4 (8 ymol L)
— methylocellin-1 (2 pmol L")
— reyranin-1 (16 pmol L)
Polymyxin B (5 pmol L")

Weight change (%)
s
?

®
o

o
o

0 1
Time (days)

Figure 7. Anti-infective activity of AMPs in preclinical animal model

¢ CellP’ress

OPEN ACCESS

p < 0.0001
\ p < 0.0001
\ p = 0.9640
} p = 0.0004
\

p = 0.3092

p = 0.9990

p < 0.0001
p <0.0001
p = 0.6809

p =0.7485

T 2
!

[ Control
[J synechocucin-1 (8 ymol L)
[] proteobacticin-1 (16 pmol L)
[J actinomycin-1 (64 pmol L)
lachnospirin-1 (2 pmol L)
[] enterococcin-1 (1 pmol L)
[ alphaprotecin-1 (1 ymol L)
[1 oscillospirin-1 (8 pmol L")
[T ampspherin-4 (8 ymol L")
[ methylocellin-1 (2 pmol L")
[I reyranin-1 (16 pmol L)
Polymyxin B (5 pmol L)

L0y

Day 2

(A) Schematic of the skin abscess mouse model used to assess the anti-infective activity of the peptides against A. baumannii cells.
(B) Peptides were tested at their MIC in a single dose 2 h after the establishment of the infection. Each group consisted of three mice (n = 3), and the bacterial loads

used to infect each mouse were derived from a different inoculum.

(C) To rule out toxic effects of the peptides, mouse weight was monitored throughout the experiment.
Statistical significance in (B) was determined using one-way ANOVA where all groups were compared to the untreated control group; p values are shown for each
of the groups. Features on the violin plots represent median and upper and lower quartiles. Data in (C) are the mean + the standard deviation. Figure created in

BioRender.com.

microbiome); lachnospirin-1 (AMP10.015_742, 2 umol L) from
Lachnospira sp. (human gut microbiome); enterococcin-1
(AMP10.051_911, 1 umol L") from Enterococcus faecalis (hu-
man gut microbiome); alphaprotecin-1 (AMP10.316_798,
1 umol L") from Alphaproteobacteria (aquatic microbiome); os-
cillospirin (AMP10.771_988, 8 umol L™") from Oscillospiraceae
(pig gut microbiome); ampspherin-4 (AMP10.466_287, 8 pumol
L") from an unknown source; methylocellin-1 (AMP10.446_
571, 2 umol L") from Methylocella sp. (soil microbiome); and
reyranin-1 (AMP10.337_875, 16 umol L") from Reyranella (plant
and soil microbiome). The skin abscess infection was estab-
lished with a bacterial load of 20 uL of A. baumannii cells at 10°
colony-forming units (CFUs) mL~" onto the wounded area of
the dorsal epidermis (Figure 7A). A single dose of each peptide
at their respective MIC value obtained in vitro (Figures 6C and
S4A) was administered to the infected area. Two days post-
infection, synechocucin-1, actynomycin-1, and oscillosporin-1
presented bacteriostatic activity, inhibiting the proliferation of
A. baumannii cells, whereas lachnospirin-1, enterococcin-1,
ampspherin-4, and reyranin-1 presented bactericidal activity
close to that of the antibiotic polymyxin B (at 5 pmol L),
reducing the CFU counts by 3-4 orders of magnitude (Figure 7B).
Four days post-infection, synechocucin-1, lachnospirin-1,
enterococcin-1, and ampspherin-4 presented a bacteriostatic
effect close to that of the antibiotic polymyxin B, reducing the
CFU counts by 2-3 orders of magnitude compared to the un-
treated control (Figure S6C). These results highlight the anti-

infective potential of the tested peptides from AMPSphere as
they were administered at a single time immediately after the
establishment of the abscess. Mouse weight was monitored as
a proxy for toxicity, and no significant changes were observed
(Figures 7C and S6D), suggesting that the peptides tested
were not toxic.

DISCUSSION

Here, we used ML to identify nearly a million candidate AMPs in
the global microbiome. Building on previous studies that
focused specifically on the human gut microbiome,®*%%” we
cataloged AMPs from the global microbiome across 63,410 pub-
licly available metagenomes as well as 87,920 high-quality mi-
crobial genomes from the ProGenomes2 database.’® This led
to the creation of AMPSphere (https://ampsphere.big-data-
biology.org/), an open-access and publicly available resource
encompassing 863,498 non-redundant peptides and 6,499
high-quality AMP families from 72 different habitats, including
marine and soil environments and the human gut. Most of the
c_AMPs (91.5%) were previously unknown and lacked de-
tectable homologs in other databases, and about one in five
had evidence of translation and/or transcription, as they could
be detected in independent publicly available sets of metatran-
scriptomes or metaproteomes.

We designed a set of tests to capture higher-quality predic-
tions, but many peptides failed these tests despite evidence
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that they were active, including our own in vitro data and the ex-
istence of validated homologs in external databases. Low-prev-
alence peptides will be less likely to pass the tests (RNAcode®®
requires multiple variants), which is independent of their activity
and influenced by sampling biases.

Focusing on candidate AMPs that are directly encoded in the
genome enabled in vitro and in vivo testing using chemical syn-
thesis without post-translational modifications, but there are
other processes that generate active peptides, such as encrypted
peptides (EPs),” which we used as a comparison point. Notably,
the amino acid composition and physicochemical characteristics
of the validated AMPs from AMPSphere differed from those of
recently identified in EPs.” Two evolutionary mechanisms by
which AMPs may be generated were explored. First, mutations
in genes encoding longer proteins could generate gene frag-
ments via truncation. Among the enriched ortholog groups of pro-
teins from GMGCv1°> homologous to c_AMPSs, we observed that
a majority of groups had unknown function (53.8%), similar to
what was reported by Sberro et al.*® for small proteins from the
human gut microbiome. The second mechanism is that a small
protein gene could undergo a duplication followed by mutation,
which we observed in the case of ribosomal proteins. Ribosomal
proteins can harbor antimicrobial activity,®® possibly due to their
amyloidogenic properties.®® Other origins of AMPs may be hori-
zontal gene transfer®® or ancestral non-coding sequences.®’

Nonetheless, the majority of identified AMPs did not have a
detectable homolog in other databases. The lack of observed
homology may be due to limitations in our ability to robustly
detect these homology relationships in small sequences, but
there is also the possibility that small proteins, such as AMPs,
may be more likely to be generated de novo compared to longer
proteins and may have repeatedly evolved in various taxa.®” This
may also be an explanation for the large fraction of c_AMPs in the
AMPSphere that do not cluster with any other sequences.

We observed that c_AMPs from AMPSphere were habitat-
specific and mostly accessory members of microbial pange-
nomes. Furthermore, four out of the five genera with the most
c_AMPs present in AMPSphere share a host-associated life-
style, and three of these (Prevotella, Faecalibacterium, and
CAG-110) are common in animal hosts®*~°° (Figure 5).

Valles-Colomer et al.,”” who recently analyzed a large collection
of human-associated metagenomes, provide a species-specific
index of transmissibility for the several transmission scenarios
they study (e.g., mother to infant). Hypothesizing that AMP pro-
duction may be related to transmission, we correlated the spe-
cies-specific payp calculated in AMPSphere with transmission
scores. In both the human gut and oral microbiomes, species
with higher p,p are less transmissible, possibly because AMPs
confer protection against strain replacement. Taken together,
these results validate the applicability of AMPSphere in the study
of microbial ecology, as they suggest a role for AMPs in deter-
mining the transmissibility and colonization ability of microbes,
which warrants further investigation and validation in future work.

Finally, we experimentally validated predictions made by our
ML model*® and found that 79 (out of 100) synthesized AMPs dis-
played antimicrobial activity against either pathogens or com-
mensals. Nonetheless, notably, four peptides (cagicin-1, cagi-
cin-4, and enterococcin-1 against A. baumannii and cagicin-1

3772 Cell 187, 3761-3778, July 11, 2024

Cell

and lachnospirin-1 against vancomycin-resistant E. faecium)
presented MIC values as low as 1 umol L™, comparable to the
MICs of some of the most potent peptides previously described
in the literature.®45°

We show that the tested AMPs from AMPSphere tended to
target clinically relevant Gram-negative pathogens and showed
activity against vancomycin-resistant E. faecium. Although con-
ventional AMPs do not target bacteria from the human gut micro-
biome,®* tested AMPs from AMPSphere showed efficacy
against commensal bacteria, suggesting potential ecological
implications of peptides as protective agents for their pro-
ducing organisms and their ability to reconfigure microbiome
communities.

When assessing their activity in vivo, three peptides exhibited
anti-infective efficacy in a murine infection model, with lachno-
spirin-1 and enterococcin-1 being the most potent, resulting in
a reduction of bacterial load by up to three orders of magnitude.
The active peptides included those derived from both human-
associated and environmental microbiota, validating our app-
roach of investigating the global microbiome. Overall, our find-
ings unveil a wide array of AMP sequences without matches in
other databases, highlighting the potential of machine learning
in the discovery of much-needed antimicrobials.

Limitations of the study

We focused on a particular category of AMPs, namely peptides
encoded by their own genes and composed of up to 100 amino
acids, which does not cover all active peptides. We explored the
global microbiome as represented in public databases, and
certain habitats and areas of the globe have been significantly
more explored than others. This uneven coverage also impacts
our quality estimates, as they depend on data availability. We
will, however, continue to update the resource as newer ge-
nomes and metagenomes are made available. We report results
based on finding homologs to our peptides, but matching small
sequences to large databases has a higher rate of errors (partic-
ularly missed matches) than is the case for longer sequences.
Our results on the transmissibility of microbial strains and AMP
density were intended to demonstrate the value of AMPSphere
as a resource, but a full validation of this link will be the focus
of future work. Finally, we tested peptides in vitro and in vivo
against a panel of bacteria. Given that we observed species-
and even strain-specific responses, it is possible that peptides
for which we did not observe any activity would have been active
against strains not tested here.

STARXMETHODS

Detailed methods are provided in the online version of this paper and include
the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
o Lead contact
o Materials availability
o Data and code availability
o EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
o Bacterial strains and growth conditions
o Skin abscess infection mouse model
e METHOD DETAILS



Cell

Selection of microbial (meta)genomes
Reads trimming and assembly
smORF and AMP prediction
Clustering of AMP families
Quality control of c_AMPs
Sample-based c_AMPs accumulation curves
Multi-habitat and rare c_AMPs
Testing c_AMPs overlap across habitats
c_AMP density in microbial species
¢_AMPs and bacterial species transmissibility
Determination of accessory AMPs
Annotation of AMPs using different datasets
Genomic context conservation analysis
AMPSphere web resource
Peptide selection for synthesis and testing
Minimal inhibitory concentration (MIC) determination
Circular dichroism assays
Outer membrane permeabilization assays

o Cytoplasmic membrane depolarization assays
o QUANTIFICATION AND STATISTICAL ANALYSIS
o ADDITIONAL RESOURCES

O 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.
2024.05.013.

ACKNOWLEDGMENTS

We thank Marija Dmitrijeva (University of Zurich) for her helpful comments on a
previous version of the manuscript. We thank Kaylyn Tousignant (Queensland
University of Technology) for her help editing the manuscript. We thank Georgina
H. Joyce (Queensland University of Technology) for her help designing the graph-
ical abstract. We thank members of the Coelho group and the de la Fuente Lab for
insightful discussions. C.F.-N. holds a Presidential Professorship at the University
of Pennsylvania and acknowledges funding from the Procter & Gamble Com-
pany, United Therapeutics, a BBRF Young Investigator Grant, the Nemirovsky
Prize, the Penn Health-Tech Accelerator Award, Defense Threat Reduction
Agency grants HDTRA11810041 and HDTRA1-23-1-0001, and the Dean’s Inno-
vation Fund from the Perelman School of Medicine at the University of Pennsyl-
vania. We thank Dr. Mark Goulian for kindly donating the strains Escherichia coli
AlC221 (Escherichia coli MG1655 phnE_2:FRT [control strain for AIC 222]) and
Escherichia coli AIC222 (Escherichia coli MG1655 pmrA53 phnE_2:FRT [poly-
myxin-resistant]). This work was partly funded by the EMBL and the following
grants: National Natural Science Foundation of China grants T2225015 and
61932008 (L.P.C. and X.-M.Z.); Shanghai Science and Technology Commission
Program grant 23JS1410100 (L.P.C. and X.-M.Z.); National Key R&D Program
of China grants 2023YFF1204800 and 2020YFA0712403 (L.P.C. and
X.-M.Z.); Shanghai Municipal Science and Technology Major Project grant
2018SHZDZX01 (L.P.C. and X.-M.Z.); Lingang Laboratory and National Key Lab-
oratory of Human Factors Engineering Joint Grant LG-TKN-202203-01 (X.-M.Z.);
The Science and Technology Commission of Shanghai Municipality grant
22JC1410900 (L.P.C.); Australian Research Council grant FT230100724
(L.P.C.); the Langer Prize from the AIChE Foundation (C.F.-N.); National Institutes
of Health grant R35GM 138201 (C.F.-N.); Defense Threat Reduction Agency grant
HDTRA1-21-1-0014 (C.F.-N.); PID2021-127210NB-100, MCIN/AEI/10.13039/
501100011033/FEDER, UE (J.H.-C.); ’la Caixa’ Foundation ID 100010434, fellow-
ship code LCF/BQ/DI18/11660009 (A.R.d.R.); and the European Union’s Horizon
2020 research and innovation program under the Marie Sktodowska-Curie grant
agreement 713673 (A.R.d.R.).

AUTHOR CONTRIBUTIONS

Conceptualization, C.D.S.-J., L.P.C., M.D.T.T., and C.F.-N.; Data curation,
C.D.S.-J, YD, T.S.B.S,, MK, AF., LP.C., M.D.T.T., and C.F.-N.; Formal
analysis, C.D.S.-J., L.P.C., and M.D.T.T.; Funding acquisition, L.P.C.,

¢? CellPress

OPEN ACCESS

X.-M.Z., and C.F.-N.; Investigation, C.D.S.-J., L.P.C., M.D.T.T., and C.F.-N.;
Methodology, C.D.S.-J., Y.D., J.H.-C., AR.d.R, LP.C., M.D.T.T., and
C.F.-N.; Project administration, L.P.C., M.K, X.-M.Z., P.B., and C.F.-N.; Re-
sources, L.P.C., X.-M.Z., and C.F.-N.; Supervision, L.P.C. and C.F.-N.; Visual-
ization, C.D.S.-J., J.H.-C., J.S.,AV,,AH.,C.Z,,L.P.C.,and M.D.T.T.; Writing -
original draft, C.D.S.-J., M.D.T.T., C.F.-N., and L.P.C.; Writing - review & edit-
ing, C.D.S.-J., Y.D,, J.H.-C., AR.d.R, T.S.B.S, AF, P.B, X.-M.Z, LP.C,,
M.D.T.T., and C.F.-N.

DECLARATION OF INTERESTS

C.F.-N. provides consulting services to Invaio Sciences and is a member of the
Scientific Advisory Boards of Nowture S.L. and Phare Bio. The de la Fuente
Lab has received research funding or in-kind donations from United Therapeu-
tics, Strata Manufacturing PJSC, and Procter & Gamble, none of which were
used in support of this work. An invention disclosure associated with this
work has been submitted.

Received: June 14, 2023
Revised: April 11, 2024
Accepted: May 6, 2024
Published: June 5, 2024

REFERENCES

1. de la Fuente-Nunez, C., Torres, M.D., Mojica, F.J., and Lu, T.K. (2017).
Next-generation precision antimicrobials: towards personalized treat-
ment of infectious diseases. Curr. Opin. Microbiol. 37, 95-102. https://
doi.org/10.1016/j.mib.2017.05.014.

2. Antimicrobial Resistance Collaborators (2022). Global burden of bacte-
rial antimicrobial resistance in 2019: a systematic analysis. Lancet 399,
629-655. https://doi.org/10.1016/S0140-6736(21)02724-0.

3. Stokes, J.M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia,
N.M., MacNair, C.R., French, S., Carfrae, L.A., Bloom-Ackermann, Z.,
et al. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell
180, 688-702.e13. https://doi.org/10.1016/j.cell.2020.01.021.

4. Torres, M.D.T., Melo, M.C.R., Flowers, L., Crescenzi, O., Notomista, E.,
and de la Fuente-Nunez, C. (2022). Mining for encrypted peptide antibi-
otics in the human proteome. Nat. Biomed. Eng. 6, 67-75. https://doi.
org/10.1038/s41551-021-00801-1.

5. Porto, W.F., Irazazabal, L., Alves, E.S.F., Ribeiro, S.M., Matos, C.O.,
Pires, A.S., Fensterseifer, .C.M., Miranda, V.J., Haney, E.F., Humblot,
V., etal. (2018). In silico optimization of a guava antimicrobial peptide en-
ables combinatorial exploration for peptide design. Nat. Commun. 9,
1490. https://doi.org/10.1038/s41467-018-03746-3.

6. Ma, Y., Guo, Z., Xia, B., Zhang, Y., Liu, X., Yu, Y., Tang, N., Tong, X.,
Wang, M., Ye, X., et al. (2022). Identification of antimicrobial peptides
from the human gut microbiome using deep learning. Nat. Biotechnol.
40, 921-931. https://doi.org/10.1038/s41587-022-01226-0.

7. Wong, F., de la Fuente-Nunez, C., and Collins, J.J. (2023). Leveraging
artificial intelligence in the fight against infectious diseases. Science
381, 164-170. https://doi.org/10.1126/science.adh1114.

8. Cesaro, A., Bagheri, M., Torres, M., Wan, F., and de la Fuente-Nunez, C.
(2023). Deep learning tools to accelerate antibiotic discovery. Expert
Opin. Drug Discov. 18, 1245-1257. https://doi.org/10.1080/17460441.
2023.2250721.

9. Torres, M.D.T., and de la Fuente-Nunez, C. (2019). Toward computer-
made artificial antibiotics. Curr. Opin. Microbiol. 57, 30-38. https://doi.
org/10.1016/j.mib.2019.03.004.

10. Maasch, J.R.M.A,, Torres, M.D.T., Melo, M.C.R., and de la Fuente-Nu-
nez, C. (2023). Molecular de-extinction of ancient antimicrobial peptides
enabled by machine learning. Cell Host Microbe 37, 1260-1274.e6.
https://doi.org/10.1016/j.chom.2023.07.001.

11. Besse, A., Vandervennet, M., Goulard, C., Peduzzi, J., Isaac, S., Rebuf-
fat, S., and Carré-Mlouka, A. (2017). Halocin C8: an antimicrobial peptide

Cell 187, 3761-3778, July 11, 2024 3773



https://doi.org/10.1016/j.cell.2024.05.013
https://doi.org/10.1016/j.cell.2024.05.013
https://doi.org/10.1016/j.mib.2017.05.014
https://doi.org/10.1016/j.mib.2017.05.014
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1038/s41551-021-00801-1
https://doi.org/10.1038/s41551-021-00801-1
https://doi.org/10.1038/s41467-018-03746-3
https://doi.org/10.1038/s41587-022-01226-0
https://doi.org/10.1126/science.adh1114
https://doi.org/10.1080/17460441.2023.2250721
https://doi.org/10.1080/17460441.2023.2250721
https://doi.org/10.1016/j.mib.2019.03.004
https://doi.org/10.1016/j.mib.2019.03.004
https://doi.org/10.1016/j.chom.2023.07.001

¢? CellPress

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24,

25.

26.

27.

OPEN ACCESS

distributed among four halophilic archaeal genera: Natrinema, Halo-
terrigena, Haloferax, and Halobacterium. Extremophiles 27, 623-638.
https://doi.org/10.1007/s00792-017-0931-5.

Cotter, P.D., Ross, R.P., and Hill, C. (2013). Bacteriocins — a viable alter-
native to antibiotics? Nat. Rev. Microbiol. 17, 95-105. https://doi.org/10.
1038/nrmicro2937.

Wang, S., Zheng, Z., Zou, H., Li, N., and Wu, M. (2019). Characterization
of the secondary metabolite biosynthetic gene clusters in archaea. Com-
put. Biol. Chem. 78, 165-169. https://doi.org/10.1016/j.compbiolchem.
2018.11.019.

Zasloff, M. (2019). Antimicrobial Peptides of Multicellular Organisms: My
Perspective. In Antimicrobial Peptides: Basics for Clinical Application, K.
Matsuzaki, ed. (Springer Singapore), pp. 3-6. https://doi.org/10.1007/
978-981-13-3588-4_1.

Huang, K.-Y., Chang, T.-H., Jhong, J.-H., Chi, Y.-H., Li, W.-C., Chan, C.-
L., Robert Lai, K., and Lee, T.-Y. (2017). Identification of natural antimi-
crobial peptides from bacteria through metagenomic and metatranscrip-
tomic analysis of high-throughput transcriptome data of Taiwanese
oolong teas. BMC Syst. Biol. 77, 131. https://doi.org/10.1186/s12918-
017-0503-4.

Torres, M.D.T., Sothiselvam, S., Lu, T.K., and de la Fuente-Nunez, C.
(2019). Peptide Design Principles for Antimicrobial Applications. J. Mol.
Biol. 431, 3547-3567. https://doi.org/10.1016/j.jmb.2018.12.015.

Pizzo, E., Cafaro, V., Di Donato, A., and Notomista, E. (2018). Cryptic
Antimicrobial Peptides: Identification Methods and Current Knowledge
of their Immunomodulatory Properties. Curr. Pharm. Des. 24, 1054-
1066. https://doi.org/10.2174/1381612824666180327165012.

Nolan, E.M., and Walsh, C.T. (2009). How nature morphs peptide scaf-
folds into antibiotics. Chembiochem 70, 34-53. https://doi.org/10.1002/
cbic.200800438.

Singh, N., and Abraham, J. (2014). Ribosomally synthesized peptides
from natural sources. J. Antibiot. 67, 277-289. https://doi.org/10.1038/
ja.2013.138.

Garcia-Bayona, L., and Comstock, L.E. (2018). Bacterial antagonism in

host-associated microbial communities. Science 367, eaat2456.
https://doi.org/10.1126/science.aat2456.

. Anderson, M.C., Vonaesch, P., Saffarian, A., Marteyn, B.S., and Sanso-

netti, P.J. (2017). Shigella sonnei encodes a functional T6SS used for in-
terbacterial competition and niche occupancy. Cell Host Microbe 217,
769-776.e3. https://doi.org/10.1016/j.chom.2017.05.004.

Krismer, B., Weidenmaier, C., Zipperer, A., and Peschel, A. (2017). The
commensal lifestyle of Staphylococcus aureus and its interactions with
the nasal microbiota. Nat. Rev. Microbiol. 15, 675-687. https://doi.org/
10.1038/nrmicro.2017.104.

Zhao, W., Caro, F., Robins, W., and Mekalanos, J.J. (2018). Antagonism
toward the intestinal microbiota and its effect on Vibrio cholerae viru-
lence. Science 359, 210-213. https://doi.org/10.1126/science.aap8775.

Quereda, J.J., Nahori, M.A., Meza-Torres, J., Sachse, M., Titos-Jiménez,
P., Gomez-Laguna, J., Dussurget, O., Cossart, P., and Pizarro-Cerd3, J.
(2017). Listeriolysin S is a streptolysin s-like virulence factor that targets
exclusively prokaryotic cells in vivo. mBio 8, e00259-17. https://doi.org/
10.1128/mBio0.00259-17.

Quereda, J.J., Dussurget, O., Nahori, M.A., Ghozlane, A., Volant, S.,
Dillies, M.A., Regnault, B., Kennedy, S., Mondot, S., Villoing, B., et al.
(2016). Bacteriocin from epidemic Listeria strains alters the host intestinal
microbiota to favor infection. Proc. Natl. Acad. Sci. USA 113, 5706-5711.
https://doi.org/10.1073/pnas.1523899113.

Gomes, B., Augusto, M.T., Felicio, M.R., Hollmann, A., Franco, O.L.,
Gongalves, S., and Santos, N.C. (2018). Designing improved active pep-
tides for therapeutic approaches against infectious diseases. Biotechnol.
Adv. 36, 415-429. https://doi.org/10.1016/j.biotechadv.2018.01.004.

Lesiuk, M., Paduszyriska, M., and Greber, K.E. (2022). Synthetic Antimi-
crobial Immunomodulatory Peptides: Ongoing Studies and Clinical Tri-

3774 Cell 187, 3761-3778, July 11, 2024

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Cell

als. Antibiotics (Basel) 77, 1062. https://doi.org/10.3390/antibiotics
11081062.

Mahlapuu, M., Hakansson, J., Ringstad, L., and Bjérn, C. (2016). Antimi-
crobial Peptides: An Emerging Category of Therapeutic Agents. Front.
Cell. Infect. Microbiol. 6, 235805.

Baquero, F., Lanza, V.F., Baguero, M.R., Del Campo, R., and Bravo-Vaz-
quez, D.A. (2019). Microcins in Enterobacteriaceae: peptide antimicro-
bials in the eco-active intestinal chemosphere. Front. Microbiol. 70,
2261. https://doi.org/10.3389/fmicb.2019.02261.

Kim, S.G., Becattini, S., Moody, T.U., Shliaha, P.V., Littmann, E.R., Seok,
R., Gjonbalaj, M., Eaton, V., Fontana, E., Amoretti, L., et al. (2019). Micro-
biota-derived lantibiotic restores resistance against vancomycin-resis-
tant Enterococcus. Nature 572, 665-669. https://doi.org/10.1038/
s41586-019-1501-z.

Nakatsuiji, T., Hata, T.R., Tong, Y., Cheng, J.Y., Shafiq, F., Butcher, A.M.,
Salem, S.S., Brinton, S.L., Rudman Spergel, A.K., Johnson, K., et al.
(2021). Development of a human skin commensal microbe for bacterio-
therapy of atopic dermatitis and use in a phase 1 randomized clinical trial.
Nat. Med. 27, 700-709. https://doi.org/10.1038/s41591-021-01256-2.

Spohn, R., Daruka, L., Lazar, V., Martins, A., Vidovics, F., Grézal, G.,
Méhi, O., Kintses, B., Szamel, M., Jangir, P.K., et al. (2019). Integrated
evolutionary analysis reveals antimicrobial peptides with limited resis-
tance. Nat. Commun. 70, 4538. https://doi.org/10.1038/s41467-019-
12364-6.

Cesaro, A., Torres, M.D.T., Gaglione, R., Del’Olmo, E., Di Girolamo, R.,
Bosso, A., Pizzo, E., Haagsman, H.P., Veldhuizen, E.J.A., de la Fuente-
Nunez, C., and Arciello, A. (2022). Synthetic Antibiotic Derived from Se-
quences Encrypted in a Protein from Human Plasma. ACS Nano 176,
1880-1895. https://doi.org/10.1021/acsnano.1c04496.

Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., and
Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and transla-
tion initiation site identification. BMC Bioinf. 77, 119. https://doi.org/10.
1186/1471-2105-11-119.

Ahrens, C.H., Wade, J.T., Champion, M.M., and Langer, J.D. (2022). A
Practical Guide to Small Protein Discovery and Characterization Using
Mass Spectrometry. J. Bacteriol. 204, e0035321. https://doi.org/10.
1128/JB.00353-21.

Storz, G., Wolf, Y.l., and Ramamurthi, K.S. (2014). Small Proteins Can No
Longer Be Ignored. Annu. Rev. Biochem. 83, 753-777. https://doi.org/
10.1146/annurev-biochem-070611-102400.

Su, M., Ling, Y., Yu, J., Wu, J., and Xiao, J. (2013). Small proteins: un-
tapped area of potential biological importance. Front. Genet. 4, 286.
https://doi.org/10.3389/fgene.2013.00286.

Sberro, H., Fremin, B.J., Zlitni, S., Edfors, F., Greenfield, N., Snyder,
M.P., Pavlopoulos, G.A., Kyrpides, N.C., and Bhatt, A.S. (2019). Large-
Scale Analyses of Human Microbiomes Reveal Thousands of Small,
Novel Genes. Cell 178, 1245-1259.e14. https://doi.org/10.1016/j.cell.
2019.07.016.

Donia, M.S., Cimermancic, P., Schulze, C.J., Wieland Brown, L.C., Mar-
tin, J., Mitreva, M., Clardy, J., Linington, R.G., and Fischbach, M.A.
(2014). A systematic analysis of biosynthetic gene clusters in the human
microbiome reveals a common family of antibiotics. Cell 158, 1402-1414.
https://doi.org/10.1016/j.cell.2014.08.032.

Fingerhut, L.C.H.W., Miller, D.J., Strugnell, .M., Daly, N.L., and Cooke,
I.R. (2021). ampir: an R package for fast genome-wide prediction of anti-
microbial peptides. Bioinformatics 36, 5262-5263. https://doi.org/10.
1093/bioinformatics/btaa653.

Sugimoto, Y., Camacho, F.R., Wang, S., Chankhamijon, P., Odabas, A.,
Biswas, A., Jeffrey, P.D., and Donia, M.S. (2019). A metagenomic strat-
egy for harnessing the chemical repertoire of the human microbiome.
Science 366, eaax9176. https://doi.org/10.1126/science.aax9176.


https://doi.org/10.1007/s00792-017-0931-5
https://doi.org/10.1038/nrmicro2937
https://doi.org/10.1038/nrmicro2937
https://doi.org/10.1016/j.compbiolchem.2018.11.019
https://doi.org/10.1016/j.compbiolchem.2018.11.019
https://doi.org/10.1007/978-981-13-3588-4_1
https://doi.org/10.1007/978-981-13-3588-4_1
https://doi.org/10.1186/s12918-017-0503-4
https://doi.org/10.1186/s12918-017-0503-4
https://doi.org/10.1016/j.jmb.2018.12.015
https://doi.org/10.2174/1381612824666180327165012
https://doi.org/10.1002/<?show [?tjl=20mm]&tjlpc;[?tjl]?>cbic.200800438
https://doi.org/10.1002/<?show [?tjl=20mm]&tjlpc;[?tjl]?>cbic.200800438
https://doi.org/10.1038/ja.2013.138
https://doi.org/10.1038/ja.2013.138
https://doi.org/10.1126/science.aat2456
https://doi.org/10.1016/j.chom.2017.05.004
https://doi.org/10.1038/nrmicro.2017.104
https://doi.org/10.1038/nrmicro.2017.104
https://doi.org/10.1126/science.aap8775
https://doi.org/10.1128/mBio.00259-17
https://doi.org/10.1128/mBio.00259-17
https://doi.org/10.1073/pnas.1523899113
https://doi.org/10.1016/j.biotechadv.2018.01.004
https://doi.org/10.3390/antibiotics<?show [?tjl=20mm]&tjlpc;[?tjl]?>11081062
https://doi.org/10.3390/antibiotics<?show [?tjl=20mm]&tjlpc;[?tjl]?>11081062
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref28
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref28
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref28
https://doi.org/10.3389/fmicb.2019.02261
https://doi.org/10.1038/s41586-019-1501-z
https://doi.org/10.1038/s41586-019-1501-z
https://doi.org/10.1038/s41591-021-01256-2
https://doi.org/10.1038/s41467-019-12364-6
https://doi.org/10.1038/s41467-019-12364-6
https://doi.org/10.1021/acsnano.1c04496
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1128/JB.00353-21
https://doi.org/10.1128/JB.00353-21
https://doi.org/10.1146/annurev-biochem-070611-102400
https://doi.org/10.1146/annurev-biochem-070611-102400
https://doi.org/10.3389/fgene.2013.00286
https://doi.org/10.1016/j.cell.2019.07.016
https://doi.org/10.1016/j.cell.2019.07.016
https://doi.org/10.1016/j.cell.2014.08.032
https://doi.org/10.1093/bioinformatics/btaa653
https://doi.org/10.1093/bioinformatics/btaa653
https://doi.org/10.1126/science.aax9176

Cell

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Santos-Junior, C.D., Pan, S., Zhao, X.-M., and Coelho, L.P. (2020). Ma-
crel: antimicrobial peptide screening in genomes and metagenomes.
Peerd 8, e10555. https://doi.org/10.7717/peerj.10555.

Mende, D.R., Letunic, I., Maistrenko, O.M., Schmidt, T.S.B., Milanese,
A., Paoli, L., Hernandez-Plaza, A., Orakov, A.N., Forslund, S.K., Suna-
gawa, S., etal. (2020). proGenomes2: an improved database for accurate
and consistent habitat, taxonomic and functional annotations of prokary-
otic genomes. Nucleic Acids Res. 48, D621-D625. https://doi.org/10.
1093/nar/gkz1002.

Navidinia, M. (2016). The clinical importance of emerging ESKAPE path-
ogens in nosocomial infections. Archives of Advances in Biosciences 7,
43-57. https://doi.org/10.22037/jps.v7i3.12584.

Mulani, M.S., Kamble, E.E., Kumkar, S.N., Tawre, M.S., and Pardesi, K.R.
(2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of
Antimicrobial Resistance: A Review. Front. Microbiol. 70, 539. https://
doi.org/10.3389/fmicb.2019.00539.

Shi, G., Kang, X., Dong, F., Liu, Y., Zhu, N., Hu, Y., Xu, H., Lao, X., and
Zheng, H. (2022). DRAMP 3.0: an enhanced comprehensive data repos-
itory of antimicrobial peptides. Nucleic Acids Res. 50, D488-D496.
https://doi.org/10.1093/nar/gkab651.

Zhang, L.-J., and Gallo, R.L. (2016). Antimicrobial peptides. Curr. Biol.
26, R14-R19. https://doi.org/10.1016/j.cub.2015.11.017.

Bhadra, P., Yan, J., Li, J., Fong, S., and Siu, S.W.l. (2018). AmPEP:
Sequence-based prediction of antimicrobial peptides using distribution
patterns of amino acid properties and random forest. Sci. Rep. 8,
1697. https://doi.org/10.1038/s41598-018-19752-w.

Hao, Y., Zhang, L., Niu, Y., Cai, T., Luo, J., He, S., Zhang, B., Zhang, D.,
Qin, Y., Yang, F., and Chen, R. (2018). SmProt: a database of small pro-
teins encoded by annotated coding and non-coding RNA loci. Brief. Bio-
inform. 19, 636-643. https://doi.org/10.1093/bib/bbx005.

Venturini, E., Svensson, S.L., MaaB, S., Gelhausen, R., Eggenhofer, F., Li,
L., Cain, A.K., Parkhill, J., Becher, D., Backofen, R., et al. (2020). A global
data-driven census of Salmonella small proteins and their potential func-
tions in bacterial virulence. microLife 7, ugaa002. https://doi.org/10.
1093/femsml/ugaa002.

Aguilera-Mendoza, L., Marrero-Ponce, Y., Beltran, J.A., Tellez Ibarra, R.,
Guillen-Ramirez, H.A., and Brizuela, C.A. (2019). Graph-based data inte-
gration from bioactive peptide databases of pharmaceutical interest: to-
ward an organized collection enabling visual network analysis. Bioinfor-
matics 35, 4739-4747. https://doi.org/10.1093/bioinformatics/btz260.

Coelho, L.P., Alves, R., Del Rio, A.R., Myers, P.N., Cantalapiedra, C.P.,
Giner-Lamia, J., Schmidt, T.S., Mende, D.R., Orakov, A., Letunic, I.,
et al. (2022). Towards the biogeography of prokaryotic genes. Nature
601, 252-256. https://doi.org/10.1038/s41586-021-04233-4.

Veltri, D., Kamath, U., and Shehu, A. (2018). Deep learning improves anti-
microbial peptide recognition. Bioinformatics 34, 2740-2747. https://doi.
org/10.1093/bioinformatics/bty179.

Lawrence, T.J., Carper, D.L., Spangler, M.K., Carrell, A.A., Rush, T.A.,
Minter, S.J., Weston, D.J., and Labbé, J.L. (2021). amPEPpy 1.0: a
portable and accurate antimicrobial peptide prediction tool. Bioinformat-
ics 37, 2058-2060. https://doi.org/10.1093/bioinformatics/btaa917.

Su, X., Xu, J., Yin, Y., Quan, X., and Zhang, H. (2019). Antimicrobial pep-
tide identification using multi-scale convolutional network. BMC Bioinf.
20, 730. https://doi.org/10.1186/s12859-019-3327-y.

Lin, T.-T., Yang, L.-Y,, Lu, l.-H., Cheng, W.-C., Hsu, Z.-R., Chen, S.-H.,
and Lin, C.-Y. (2021). AI4AMP: an Antimicrobial Peptide Predictor Using
Physicochemical Property-Based Encoding Method and Deep Learning.
mSystems 6, €0029921. https://doi.org/10.1128/mSystems.00299-21.

Li, C., Sutherland, D., Hammond, S.A., Yang, C., Taho, F., Bergman, L.,
Houston, S., Warren, R.L., Wong, T., Hoang, L.M.N,, et al. (2022).
AMPIify: attentive deep learning model for discovery of novel antimicro-
bial peptides effective against whom priority pathogens. BMC Genom.
23, 77. https://doi.org/10.1186/s12864-022-08310-4.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7

72.

¢? CellPress

OPEN ACCESS

Murphy, L.R., Wallgvist, A., and Levy, R.M. (2000). Simplified amino acid
alphabets for protein fold recognition and implications for folding. Protein
Eng. 13, 149-152. https://doi.org/10.1093/protein/13.3.149.

Heintz-Buschart, A., May, P., Laczny, C.C., Lebrun, L.A., Bellora, C.,
Krishna, A., Wampach, L., Schneider, J.G., Hogan, A., de Beaufort, C.,
and Wilmes, P. (2016). Integrated multi-omics of the human gut micro-
biome in a case study of familial type 1 diabetes. Nat. Microbiol. 2,
16180. https://doi.org/10.1038/nmicrobiol.2016.180.

Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., For-
slund, S.K., Cook, H., Mende, D.R., Letunic, |., Rattei, T., Jensen, L.J.,
et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogeneti-
cally annotated orthology resource based on 5090 organisms and 2502
viruses. Nucleic Acids Res. 47, D309-D314. https://doi.org/10.1093/
nar/gky1085.

Rodriguez del Rio, A., Giner-Lamia, J., Cantalapiedra, C.P., Botas, J.,
Deng, Z., Hernandez-Plaza, A., Munar-Palmer, M., Santamaria-Her-
nando, S., Rodriguez-Herva, J.J., Ruscheweyh, H.-J., et al. (2023). Func-
tional and evolutionary significance of unknown genes from uncultivated
taxa. Nature, 1-3. https://doi.org/10.1038/s41586-023-06955-z.

Hurtado-Rios, J.J., Carrasco-Navarro, U., Almanza-Pérez, J.C., and
Ponce-Alquicira, E. (2022). Ribosomes: The New Role of Ribosomal Pro-
teins as Natural Antimicrobials. Int. J. Mol. Sci. 23, 9123. https://doi.org/
10.3390/ijms23169123.

Shoja, V., and Zhang, L. (2006). A Roadmap of Tandemly Arrayed Genes
in the Genomes of Human, Mouse, and Rat. Mol. Biol. Evol. 23, 2134-
2141. https://doi.org/10.1093/molbev/msl085.

Sukhodolets, V.V. (2006). Unequal crossing-over in Escherichia coli. Russ.
J. Genet. 42, 1285-1293. https://doi.org/10.1134/5102279540611010X.

Kim, M.K,, Kang, T.H., Kim, J., Kim, H., and Yun, H.D. (2012). Evidence
Showing Duplication and Recombination of cel Genes in Tandem from
Hyperthermophilic Thermotoga sp. Appl. Biochem. Biotechnol. 768,
1834-1848. https://doi.org/10.1007/s12010-012-9901-7.

Blaustein, R.A., McFarland, A.G., Ben Maamar, S., Lopez, A., Castro-
Wallace, S., and Hartmann, E.M. (2019). Pangenomic Approach To Un-
derstanding Microbial Adaptations within a Model Built Environment,
the International Space Station, Relative to Human Hosts and Soil. mSys-
tems 4, e00281-18. https://doi.org/10.1128/mSystems.00281-18.
Collins, F.W.J., Mesa-Pereira, B., O’Connor, P.M., Rea, M.C., Hill, C.,
and Ross, R.P. (2018). Reincarnation of Bacteriocins From the Lactoba-
cillus Pangenomic Graveyard. Front. Microbiol. 9, 1298. https://doi.org/
10.3389/fmicb.2018.01298.

Parks, D.H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft,
B.J., Evans, P.N., Hugenholtz, P., and Tyson, G.W. (2017). Recovery of
nearly 8,000 metagenome-assembled genomes substantially expands
the tree of life. Nat. Microbiol. 2, 1533-1542. https://doi.org/10.1038/
s41564-017-0012-7.

Parks, D.H., Chuvochina, M., Chaumeil, P.-A., Rinke, C., Mussig, A.J.,
and Hugenholtz, P. (2020). A complete domain-to-species taxonomy
for Bacteria and Archaea. Nat. Biotechnol. 38, 1079-1086. https://doi.
org/10.1038/s41587-020-0501-8.

Simmons, W.L., Daubenspeck, J.M., Osborne, J.D., Balish, M.F., Waites,
K.B., and Dybvig, K. (2013). Type 1 and type 2 strains of Mycoplasma
pneumoniae form different biofilms. Microbiology (Read.) 159, 737-747.
https://doi.org/10.1099/mic.0.064782-0.

. Diaz, M.H., Desai, H.P., Morrison, S.S., Benitez, A.J., Wolff, B.J., Cara-

vas, J., Read, T.D., Dean, D., and Winchell, J.M. (2017). Comprehensive
bioinformatics analysis of Mycoplasma pneumoniae genomes to investi-
gate underlying population structure and type-specific determinants.
PLoS One 12, e0174701. https://doi.org/10.1371/journal.pone.0174701.

Valles-Colomer, M., Blanco-Miguez, A., Manghi, P., Asnicar, F., Dubois,
L., Golzato, D., Armanini, F., Cumbo, F., Huang, K.D., Manara, S., et al.
(2023). The person-to-person transmission landscape of the gut and
oral microbiomes. Nature 674, 125-135. https://doi.org/10.1038/
s41586-022-05620-1.

Cell 187, 3761-3778, July 11, 2024 3775



https://doi.org/10.7717/peerj.10555
https://doi.org/10.1093/nar/gkz1002
https://doi.org/10.1093/nar/gkz1002
https://doi.org/10.22037/jps.v7i3.12584
https://doi.org/10.3389/fmicb.2019.00539
https://doi.org/10.3389/fmicb.2019.00539
https://doi.org/10.1093/nar/gkab651
https://doi.org/10.1016/j.cub.2015.11.017
https://doi.org/10.1038/s41598-018-19752-w
https://doi.org/10.1093/bib/bbx005
https://doi.org/10.1093/femsml/uqaa002
https://doi.org/10.1093/femsml/uqaa002
https://doi.org/10.1093/bioinformatics/btz260
https://doi.org/10.1038/s41586-021-04233-4
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1093/bioinformatics/bty179
https://doi.org/10.1093/bioinformatics/btaa917
https://doi.org/10.1186/s12859-019-3327-y
https://doi.org/10.1128/mSystems.00299-21
https://doi.org/10.1186/s12864-022-08310-4
https://doi.org/10.1093/protein/13.3.149
https://doi.org/10.1038/nmicrobiol.2016.180
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1038/s41586-023-06955-z
https://doi.org/10.3390/ijms23169123
https://doi.org/10.3390/ijms23169123
https://doi.org/10.1093/molbev/msl085
https://doi.org/10.1134/S102279540611010X
https://doi.org/10.1007/s12010-012-9901-7
https://doi.org/10.1128/mSystems.00281-18
https://doi.org/10.3389/fmicb.2018.01298
https://doi.org/10.3389/fmicb.2018.01298
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1099/mic.0.064782-0
https://doi.org/10.1371/journal.pone.0174701
https://doi.org/10.1038/s41586-022-05620-1
https://doi.org/10.1038/s41586-022-05620-1

¢? CellPress

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

OPEN ACCESS

Pirtskhalava, M., Amstrong, A.A., Grigolava, M., Chubinidze, M., Alim-
barashvili, E., Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt,
D.E., and Tartakovsky, M. (2021). DBAASP v3: database of antimicro-
bial/cytotoxic activity and structure of peptides as a resource for devel-
opment of new therapeutics. Nucleic Acids Res. 49, D288-D297.
https://doi.org/10.1093/nar/gkaa991.

Wang, G., Li, X., and Wang, Z. (2016). APD3: the antimicrobial peptide
database as a tool for research and education. Nucleic Acids Res. 44,
D1087-D1093. https://doi.org/10.1093/nar/gkv1278.

Micsonai, A., Moussong, E., Wien, F., Boros, E., Vadaszi, H., Murvai, N.,
Lee, Y.-H., Molnar, T., Réfrégiers, M., Goto, Y., et al. (2022). BeStSel:
webserver for secondary structure and fold prediction for protein CD
spectroscopy. Nucleic Acids Res. 50, W90-W98. https://doi.org/10.
1093/nar/gkac345.

Lifson, S., and Sander, C. (1979). Antiparallel and parallel B-strands differ
in amino acid residue preferences. Nature 282, 109-111. https://doi.org/
10.1038/282109a0.

Derrien, M., Collado, M.C., Ben-Amor, K., Salminen, S., and de Vos,
W.M. (2008). The Mucin Degrader Akkermansia muciniphila Is an Abun-
dant Resident of the Human Intestinal Tract. Appl. Environ. Microbiol. 74,
1646-1648. https://doi.org/10.1128/AEM.01226-07.

Earley, H., Lennon, G., Balfe, A., Coffey, J.C., Winter, D.C., and O’Con-
nell, P.R. (2019). The abundance of Akkermansia muciniphila and its rela-
tionship with sulphated colonic mucins in health and ulcerative colitis.
Sci. Rep. 9, 15683. https://doi.org/10.1038/s41598-019-51878-3.

Daquigan, N., Seekatz, A.M., Greathouse, K.L., Young, V.B., and White,
J.R. (2017). High-resolution profiling of the gut microbiome reveals the
extent of Clostridium difficile burden. npj Biofilms Microbiomes 3, 35.
https://doi.org/10.1038/s41522-017-0043-0.

Saenz, C., Fang, Q., Gnanasekaran, T., Trammell, S.A.J., Buijink, J.A., Pi-
sano, P., Wierer, M., Moens, F., Lengger, B., Brejnrod, A., and Arumu-
gam, M. (2023). Clostridium scindens secretome suppresses virulence
gene expression of Clostridioides difficile in a bile acid-independent
manner. Microbiol. Spectr. 17, e0393322. https://doi.org/10.1128/spec-
trum.03933-22.

Geerlings, S.Y., Kostopoulos, I., De Vos, W.M., and Belzer, C. (2018). Ak-
kermansia muciniphila in the Human Gastrointestinal Tract: When,
Where, and How? Microorganisms 6, 75. https://doi.org/10.3390/
microorganisms6030075.

Cullen, T.W., Schofield, W.B., Barry, N.A., Putnam, E.E., Rundell, E.A.,
Trent, M.S., Degnan, P.H., Booth, C.J., Yu, H., and Goodman, A.L.
(2015). Antimicrobial peptide resistance mediates resilience of prominent
gut commensals during inflammation. Science 347, 170-175. https://doi.
org/10.1126/science.1260580.

Torres, M.D.T., Pedron, C.N., Aradjo, I., Silva, P.l., Silva, F.D., and Oli-
veira, V.X. (2017). Decoralin Analogs with Increased Resistance to Degra-
dation and Lower Hemolytic Activity. ChemistrySelect 2, 18-23. https://
doi.org/10.1002/slct.201601590.

Torres, M.D.T., Pedron, C.N., Higashikuni, Y., Kramer, R.M., Cardoso,
M.H., Oshiro, K.G.N., Franco, O.L., Silva Junior, P.l., Silva, F.D., Oliveira
Junior, V.X., et al. (2018). Structure-function-guided exploration of the
antimicrobial peptide polybia-CP identifies activity determinants and
generates synthetic therapeutic candidates. Commun. Biol. 7, 221.
https://doi.org/10.1038/s42003-018-0224-2.

Silva, O.N., Torres, M.D.T., Cao, J., Alves, E.S.F., Rodrigues, L.V., Re-
sende, J.M., Lido, L.M., Porto, W.F., Fensterseifer, |.C.M., Lu, T.K,
et al. (2020). Repurposing a peptide toxin from wasp venom into antiin-
fectives with dual antimicrobial and immunomodulatory properties.
Proc. Natl. Acad. Sci. USA 117, 26936-26945. https://doi.org/10.1073/
pnas.2012379117.

Morris, F.C., Dexter, C., Kostoulias, X., Uddin, M.l., and Peleg, A.Y.
(2019). The Mechanisms of Disease Caused by Acinetobacter bauman-
nii. Front. Microbiol. 70, 1601.

3776 Cell 187, 3761-3778, July 11, 2024

87.

88.

89.

90.

1.

92,

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Cell

Petruschke, H., Schori, C., Canzler, S., Riesbeck, S., Poehlein, A., Daniel,
R., Frei, D., Segessemann, T., Zimmerman, J., Marinos, G., et al. (2021).
Discovery of novel community-relevant small proteins in a simplified hu-
man intestinal microbiome. Microbiome 9, 55. https://doi.org/10.1186/
s40168-020-00981-z.

Washietl, S., FindeiB, S., Muller, S.A., Kalkhof, S., von Bergen, M., Ho-
facker, I.L., Stadler, P.F., and Goldman, N. (2011). RNAcode: Robust
discrimination of coding and noncoding regions in comparative
sequence data. RNA 77, 578-594. https://doi.org/10.1261/rna.2536111.

Galzitskaya, O.V. (2021). Exploring Amyloidogenicity of Peptides From
Ribosomal S1 Protein to Develop Novel AMPs. Front. Mol. Biosci. 8,
705069. https://doi.org/10.3389/fmolb.2021.705069.

Ochman, H., Lawrence, J.G., and Groisman, E.A. (2000). Lateral gene
transfer and the nature of bacterial innovation. Nature 405, 299-304.
https://doi.org/10.1038/35012500.

Zheng, D., and Gerstein, M.B. (2007). The ambiguous boundary between
genes and pseudogenes: the dead rise up, or do they? Trends Genet. 23,
219-224. https://doi.org/10.1016/j.tig.2007.03.003.

Lazzaro, B.P., Zasloff, M., and Rolff, J. (2020). Antimicrobial peptides:
Application informed by evolution. Science 368, eaau5480. https://doi.
org/10.1126/science.aau5480.

Sun, S., Wang, H., Howard, A.G., Zhang, J., Su, C., Wang, Z., Du, S., Fo-
dor, A.A., Gordon-Larsen, P., and Zhang, B. (2022). Loss of Novel Diver-
sity in Human Gut Microbiota Associated with Ongoing Urbanization in
China. mSystems 7, e0020022. https://doi.org/10.1128/msystems.
00200-22.

Piquer-Esteban, S., Ruiz-Ruiz, S., Arnau, V., Diaz, W., and Moya, A.
(2022). Exploring the universal healthy human gut microbiota around
the World. Comput. Struct. Biotechnol. J. 20, 421-433. https://doi.org/
10.1016/j.csbj.2021.12.035.

Dhakan, D.B., Maji, A., Sharma, A.K., Saxena, R., Pulikkan, J., Grace, T.,
Gomez, A., Scaria, J., Amato, K.R., and Sharma, V.K. (2019). The unique
composition of Indian gut microbiome, gene catalogue, and associated
fecal metabolome deciphered using multi-omics approaches. Giga-
Science 8, giz004. https://doi.org/10.1093/gigascience/giz004.

Coelho, L.P., Alves, R., Monteiro, P., Huerta-Cepas, J., Freitas, A.T., and
Bork, P. (2019). NG-meta-profiler: fast processing of metagenomes us-
ing NGLess, a domain-specific language. Microbiome 7, 84. https://
doi.org/10.1186/s40168-019-0684-8.

Coelho, L.P. (2017). Jug: Software for Parallel Reproducible Computation
in Python. J. Open Res. Softw. 5, 30. https://doi.org/10.5334/jors.161.

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics 28,
3150-3152. https://doi.org/10.1093/bioinformatics/bts565.

Steinegger, M., and Sdding, J. (2017). MMseqgs?2 enables sensitive pro-
tein sequence searching for the analysis of massive data sets. Nat. Bio-
technol. 35, 1026-1028. https://doi.org/10.1038/nbt.3988.

Van Rossum, G. (2020). Python Release Python 3.8.2. Python.org.
https://www.python.org/downloads/release/python-382/.

Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci.
Eng. 9, 90-95. https://doi.org/10.1109/MCSE.2007.55.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020).
Array programming with NumPy. Nature 585, 357-362. https://doi.org/
10.1038/s41586-020-2649-2.

McKinney, W. (2010). Data Structures for Statistical Computing in Py-
thon. In Proceedings of the 9th Python in Science Conference,
pp. 56-61. https://doi.org/10.25080/Majora-92bf1922-00a.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261-272. https://doi.org/10.1038/s41592-
019-0686-2.


https://doi.org/10.1093/nar/gkaa991
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1093/nar/gkac345
https://doi.org/10.1093/nar/gkac345
https://doi.org/10.1038/282109a0
https://doi.org/10.1038/282109a0
https://doi.org/10.1128/AEM.01226-07
https://doi.org/10.1038/s41598-019-51878-3
https://doi.org/10.1038/s41522-017-0043-0
https://doi.org/10.1128/spectrum.03933-22
https://doi.org/10.1128/spectrum.03933-22
https://doi.org/10.3390/microorganisms6030075
https://doi.org/10.3390/microorganisms6030075
https://doi.org/10.1126/science.1260580
https://doi.org/10.1126/science.1260580
https://doi.org/10.1002/slct.201601590
https://doi.org/10.1002/slct.201601590
https://doi.org/10.1038/s42003-018-0224-2
https://doi.org/10.1073/pnas.2012379117
https://doi.org/10.1073/pnas.2012379117
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref86
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref86
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref86
https://doi.org/10.1186/s40168-020-00981-z
https://doi.org/10.1186/s40168-020-00981-z
https://doi.org/10.1261/rna.2536111
https://doi.org/10.3389/fmolb.2021.705069
https://doi.org/10.1038/35012500
https://doi.org/10.1016/j.tig.2007.03.003
https://doi.org/10.1126/science.aau5480
https://doi.org/10.1126/science.aau5480
https://doi.org/10.1128/msystems.00200-22
https://doi.org/10.1128/msystems.00200-22
https://doi.org/10.1016/j.csbj.2021.12.035
https://doi.org/10.1016/j.csbj.2021.12.035
https://doi.org/10.1093/gigascience/giz004
https://doi.org/10.1186/s40168-019-0684-8
https://doi.org/10.1186/s40168-019-0684-8
https://doi.org/10.5334/jors.161
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1038/nbt.3988
https://www.python.org/downloads/release/python-382/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

Cell

105.

106.

107.

108.

109.

110.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
0., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., etal. (2011). Sci-
kit-learn: Machine Learning in Python. Machine Learning In Python 72,
2825-2830.

The scikit-bio development team (2020). scikit-bio: A Bioinformatics Li-
brary for Data Scientists, Students, and Developers. Version 0.5.5.

Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A.,
Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., and de Hoon, M.J.L.
(2009). Biopython: freely available Python tools for computational molec-
ular biology and bioinformatics. Bioinformatics 25, 1422-1423. https://
doi.org/10.1093/bioinformatics/btp163.

Cantalapiedra, C.P., Hernandez-Plaza, A., Letunic, ., Bork, P., and
Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional Annotation,
Orthology Assignments, and Domain Prediction at the Metagenomic
Scale. Mol. Biol. Evol. 38, 5825-5829. https://doi.org/10.1093/molbev/
msab293.

Eddy, S.R. (2011). Accelerated Profile HMM Searches. PLoS Comput.
Biol. 7, €1002195. https://doi.org/10.1371/journal.pcbi.1002195.

Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2 — Approxi-
mately Maximum-Likelihood Trees for Large Alignments. PLoS One 5,
€9490. https://doi.org/10.1371/journal.pone.0009490.

. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and

Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic ge-
nomes reveals clear species boundaries. Nat. Commun. 9, 5114.
https://doi.org/10.1038/s41467-018-07641-9.

Li, D., Luo, R., Liu, C.M., Leung, C.M., Ting, H.F., Sadakane, K., Yama-
shita, H., and Lam, T.W. (2016). MEGAHIT v1.0: A fast and scalable meta-
genome assembler driven by advanced methodologies and community
practices. Methods 702, 3-11. https://doi.org/10.1016/j.ymeth.2016.
02.020.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. https://doi.
org/10.1093/bioinformatics/btp324.

Seabold, S., and Perktold, J. (2010). Statsmodels: Econometric and Sta-
tistical Modeling with Python. In Proceedings of the 9th Python in Science
Conference, pp. 92-96. https://doi.org/10.25080/Majora-92bf1922-011.

Milanese, A., Mende, D.R., Paoli, L., Salazar, G., Ruscheweyh, H.-J.,
Cuenca, M., Hingamp, P., Alves, R., Costea, P.l., Coelho, L.P., et al.
(2019). Microbial abundance, activity and population genomic profiling
with  mOTUs2. Nat. Commun. 70, 1014. https://doi.org/10.1038/
s41467-019-08844-4.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Pro-
cessing Subgroup (2009). The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/bioin-
formatics/btp352.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: A flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841-842. https://doi.
org/10.1093/bioinformatics/btq033.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez,
R., McWilliam, H., Remmert, M., Séding, J., et al. (2011). Fast, scalable
generation of high-quality protein multiple sequence alignments using
Clustal Omega. Mol. Syst. Biol. 7, 539. https://doi.org/10.1038/msb.
2011.75.

Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein
alignment using DIAMOND. Nat. Methods 712, 59-60. https://doi.org/10.
1038/nmeth.3176.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J.,
Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applica-
tions. BMC Bioinf. 10, 421. https://doi.org/10.1186/1471-2105-10-421.

UniProt Consortium (2021). UniProt: the universal protein knowledge-
base in 2021. Nucleic Acids Res. 49, D480-D489. https://doi.org/10.
1093/nar/gkaa1100.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

¢? CellPress

OPEN ACCESS

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A.,
Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson,
L.J., et al. (2021). Pfam: The protein families database in 2021. Nucleic
Acids Res. 49, D412-D419. https://doi.org/10.1093/nar/gkaa913.

Eberhardt, R.Y., Haft, D.H., Punta, M., Martin, M., O’Donovan, C., and
Bateman, A. (2012). AntiFam: a tool to help identify spurious ORFs in pro-
tein annotation. Database 2072, bas003. https://doi.org/10.1093/data-
base/bas003.

NCBI Resource Coordinators (2015). Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res. 43, D6-D17.
https://doi.org/10.1093/nar/gku1130.

Alcock, B.P., Raphenya, A.R., Lau, T.T.Y., Tsang, K.K., Bouchard, M.,
Edalatmand, A., Huynh, W., Nguyen, A.-L.V., Cheng, A.A., Liu, S., et al.
(2020). CARD 2020: antibiotic resistome surveillance with the compre-
hensive antibiotic resistance database. Nucleic Acids Res. 48, D517-
D525. https://doi.org/10.1093/nar/gkz935.

Kanehisa, M., and Sato, Y. (2020). KEGG Mapper for inferring cellular
functions from protein sequences. Protein Sci. 29, 28-35. https://doi.
org/10.1002/pro.3711.

Courtot, M., Cherubin, L., Faulconbridge, A., Vaughan, D., Green, M., Ri-
chardson, D., Harrison, P., Whetzel, P.L., Parkinson, H., and Burdett, T.
(2019). BioSamples database: an updated sample metadata hub.
Nucleic Acids Res. 47, D1172-D1178. https://doi.org/10.1093/nar/
gky1061.

Harrison, P.W., Ahamed, A., Aslam, R., Alako, B.T.F., Burgin, J., Buso, N.,
Courtot, M., Fan, J., Gupta, D., Haseeb, M., et al. (2021). The European
Nucleotide Archive in 2020. Nucleic Acids Res. 49, D82-D85. https://
doi.org/10.1093/nar/gkaa1028.

Jones, P., Coté, R.G., Martens, L., Quinn, A.F., Taylor, C.F., Derache, W.,
Hermjakob, H., and Apweiler, R. (2006). PRIDE: a public repository of
protein and peptide identifications for the proteomics community. Nu-
cleic Acids Res. 34, D659-D663. https://doi.org/10.1093/nar/gkj138.

Schmidt, T.S.B., Fullam, A., Ferretti, P., Orakov, A., Maistrenko, O.M.,
Ruscheweyh, H.-J., Letunic, I., Duan, Y., Van Rossum, T., Sunagawa,
S., et al. (2024). SPIRE: a Searchable, Planetary-scale microbiome
REsource. Nucleic Acids Res. 52, D777-D783. https://doi.org/10.1093/
nar/gkad943.

Mirdita, M., Steinegger, M., Breitwieser, F., S6ding, J., and Levy Karin, E.
(2021). Fast and sensitive taxonomic assignment to metagenomic con-
tigs. Bioinformatics 37, 3029-3031. https://doi.org/10.1093/bioinformat-
ics/btab184.

Oren, A., Arahal, D.R., Rossell6-Méra, R., Sutcliffe, I.C., and Moore,
E.R.B. (2021). Emendation of Rules 5b, 8, 15 and 22 of the International
Code of Nomenclature of Prokaryotes to include the rank of phylum.
Int. J. Syst. Evol. Microbiol. 71. https://doi.org/10.1099/ijsem.0.004851.

Oren, A., and Garrity, G.M. (2021). Valid publication of the names of forty-
two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 77. https://doi.org/
10.1099/ijsem.0.005056.

Solis, A.D. (2015). Amino acid alphabet reduction preserves fold informa-
tion contained in contact interactions in proteins. Proteins 83, 2198
2216. https://doi.org/10.1002/prot.24936.

Peterson, E.L., Kondev, J., Theriot, J.A., and Phillips, R. (2009). Reduced
amino acid alphabets exhibit an improved sensitivity and selectivity in
fold assignment. Bioinformatics 25, 1356-1362. https://doi.org/10.
1093/bioinformatics/btp164.

Smith, T.F., and Waterman, M.S. (1981). Identification of Common Mo-
lecular Subsequences. J. Mol. Biol. 147, 195-197. https://doi.org/10.
1016/0022-2836(81)90087-5.

Karlin, S., and Altschul, S.F. (1990). Methods for assessing the statistical
significance of molecular sequence features by using general scoring
schemes. Proc. Natl. Acad. Sci. USA 87, 2264-2268. https://doi.org/
10.1073/pnas.87.6.2264.

Cell 187, 3761-3778, July 11, 2024 3777



http://refhub.elsevier.com/S0092-8674(24)00522-1/sref105
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref105
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref105
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref105
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref106
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref106
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1093/database/bas003
https://doi.org/10.1093/database/bas003
https://doi.org/10.1093/nar/gku1130
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1002/pro.3711
https://doi.org/10.1002/pro.3711
https://doi.org/10.1093/nar/gky1061
https://doi.org/10.1093/nar/gky1061
https://doi.org/10.1093/nar/gkaa1028
https://doi.org/10.1093/nar/gkaa1028
https://doi.org/10.1093/nar/gkj138
https://doi.org/10.1093/nar/gkad943
https://doi.org/10.1093/nar/gkad943
https://doi.org/10.1093/bioinformatics/btab184
https://doi.org/10.1093/bioinformatics/btab184
https://doi.org/10.1099/ijsem.0.004851
https://doi.org/10.1099/ijsem.0.005056
https://doi.org/10.1099/ijsem.0.005056
https://doi.org/10.1002/prot.24936
https://doi.org/10.1093/bioinformatics/btp164
https://doi.org/10.1093/bioinformatics/btp164
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1073/pnas.87.6.2264
https://doi.org/10.1073/pnas.87.6.2264

¢? CellPress

138.

139.

140.

141.

142.

143.

144,

OPEN ACCESS

Altschul, S.F., Madden, T.L., Schéffer, A.A., Zhang, J., Zhang, Z., Miller,
W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res. 25,
3389-3402.

Cena, J.A. de, Zhang, J., Deng, D., Damé-Teixeira, N., and Do, T. (2021).
Low-Abundant Microorganisms: The Human Microbiome’s Dark Matter,
a Scoping Review. Front. Cell. Infect. Microbiol. 77, 689197.

Mende, D.R., Sunagawa, S., Zeller, G., and Bork, P. (2013). Accurate and
universal delineation of prokaryotic species. Nat. Methods 70, 881-884.
https://doi.org/10.1038/nmeth.2575.

Sélem-Mojica, N., Aguilar, C., Gutiérrez-Garcia, K., Martinez-Guerrero,
C.E., and Barona-Gémez, F. (2019). EvoMining reveals the origin and
fate of natural product biosynthetic enzymes. Microb. Genom. 5,
€000260. https://doi.org/10.1099/mgen.0.000260.

Rodriguez-R, L.M., Conrad, R.E., Viver, T., Feistel, D.J., Lindner, B.G.,
Venter, S.N., Orellana, L.H., Amann, R., Rossello-Mora, R., and Konstan-
tinidis, K.T. (2024). An ANI gap within bacterial species that advances the
definitions of intra-species units. mBio 15, €02696-23. https://doi.org/10.
1128/mbio.02696-23.

Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell,
A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., et al.
(2016). The Pfam protein families database: towards a more sustainable
future. Nucleic Acids Res. 44, D279-D285. https://doi.org/10.1093/nar/
gkv1344.

SolyPep: a fast generator of soluble peptides https://bioserv.rpbs.univ-
paris-diderot.fr/services/SolyPep/

3778 Cell 187, 3761-3778, July 11, 2024

145.

146.

147.

148.

149.

150.

151.

Cell

Ochoa, R., and Cossio, P. (2021). PepFun: Open Source Protocols for
Peptide-Related Computational Analysis. Molecules 26, 1664. https://
doi.org/10.3390/molecules26061664.

Kochendoerfer, G.G., and Kent, S.B. (1999). Chemical protein synthesis.
Curr. Opin. Chem. Biol. 3, 665-671. https://doi.org/10.1016/s1367-
5931(99)00024-1.

Sheppard, R. (2003). The fluorenylmethoxycarbonyl group in solid phase
synthesis. J. Pept. Sci. 9, 545-552. https://doi.org/10.1002/psc.479.

Palomo, J.M. (2014). Solid-phase peptide synthesis: an overview
focused on the preparation of biologically relevant peptides. RSC Adv.
4, 32658-32672. https://doi.org/10.1039/C4RA02458C.

Schmidt, T.S.B., Li, S.S., Maistrenko, O.M., Akanni, W., Coelho, L.P., Do-
lai, S., Fullam, A., Glazek, A.M., Hercog, R., Herrema, H., et al. (2022).
Drivers and determinants of strain dynamics following fecal microbiota
transplantation. Nat. Med. 28, 1902-1912. https://doi.org/10.1038/
s41591-022-01913-0.

Wiegand, |., Hilpert, K., and Hancock, R.E.W. (2008). Agar and broth dilu-
tion methods to determine the minimal inhibitory concentration (MIC) of
antimicrobial substances. Nat. Protoc. 3, 163-175. https://doi.org/10.
1038/nprot.2007.521.

Santos-Junior, C.D., Schmidt, T.S.B., Fullam, A., Duan, Y., Bork, P.,
Zhao, X.-M., and Coelho, L.P. (2021). AMPSphere : The Worldwide Sur-
vey of Prokaryotic Antimicrobial Peptides (Zenodo) https://doi.org/10.
5281/zenodo.4606582.


http://refhub.elsevier.com/S0092-8674(24)00522-1/sref138
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref138
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref138
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref138
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref139
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref139
http://refhub.elsevier.com/S0092-8674(24)00522-1/sref139
https://doi.org/10.1038/nmeth.2575
https://doi.org/10.1099/mgen.0.000260
https://doi.org/10.1128/mbio.02696-23
https://doi.org/10.1128/mbio.02696-23
https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1093/nar/gkv1344
https://bioserv.rpbs.univ-paris-diderot.fr/services/SolyPep/
https://bioserv.rpbs.univ-paris-diderot.fr/services/SolyPep/
https://doi.org/10.3390/molecules26061664
https://doi.org/10.3390/molecules26061664
https://doi.org/10.1016/s1367-5931(99)00024-1
https://doi.org/10.1016/s1367-5931(99)00024-1
https://doi.org/10.1002/psc.479
https://doi.org/10.1039/C4RA02458C
https://doi.org/10.1038/s41591-022-01913-0
https://doi.org/10.1038/s41591-022-01913-0
https://doi.org/10.1038/nprot.2007.521
https://doi.org/10.1038/nprot.2007.521
https://doi.org/10.5281/zenodo.4606582
https://doi.org/10.5281/zenodo.4606582

Cell

¢? CellPress

OPEN ACCESS

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Acinetobacter baumannii American Type Culture Collection ATCC 19606

Escherichia coli American Type Culture Collection ATCC 11775

Escherichia coli Escherichia coli MG1655 phnE_2:FRT AlC221

Escherichia coli Escherichia coli MG1655 pmrA53 phnE_2:FRT AlC222
(polymyxin-resistant; colistin-resistant strain)

Klebsiella pneumoniae American Type Culture Collection ATCC 13883

Pseudomonas aeruginosa N/A PAO1

Pseudomonas aeruginosa N/A PA14

Staphylococcus aureus American Type Culture Collection ATCC 12600

Staphylococcus aureus

American Type Culture Collection

ATCC BAA-1556
(methicillin-resistant strain)

Akkermansia muciniphila American Type Culture Collection ATCC BAA-635
Bacteroides fragilis American Type Culture Collection ATCC 25285
Bacteroides thetaiotaomicron American Type Culture Collection ATCC 29148
Bacteroides uniformis American Type Culture Collection ATCC 8492
Bacteroides vulgatus (Phocaeicola vulgatus) American Type Culture Collection ATCC 8482
Collinsella aerofaciens American Type Culture Collection ATCC 25986
Clostridium scindens American Type Culture Collection ATCC 35704
Parabacteroides distasonis American Type Culture Collection ATCC 8503
Chemicals, peptides, and recombinant proteins

Luria-Bertani broth BD 244620

Tryptic soy broth Sigma T8907-1KG
Agar Sigma 05039
MacConkey agar RPI M42560-500.0
Phosphate buffer saline Sigma P3913-10PAK
Glucose Sigma G5767
1-(N-phenylamino)naphthalene Sigma 104043
3,3'-dipropylthiadicarbocyanine iodide Sigma 43608

HEPES Fisher BP310-100
Potassium chloride (KCI) Sigma P3911
Deposited data

Code for generation of AMPSphere This study https://doi.org/10.5281/zenodo.11055585
AMPSphere database This study https://zenodo.org/record/4606582

Experimental models: Organisms/strains

Mouse: CD-1

Charles River

18679700-022

Software and algorithms

NGLess 1.3.0
JUG 2.1.1
Prodigal 2.6.3
Macrel v.1.0.0
CDHit 4.8.1
MMseqgs2

Coelho et al.”®
Coelho®”

Hyatt et al.>*

Santos-Junior et al.*

Fu et al.®®

Steinegger and S6ding®

https://github.com/ngless-toolkit/ngless
https://github.com/luispedro/jug
https://github.com/hyattpd/Prodigal
https://github.com/BigDataBiology/macrel
https://github.com/weizhongli/cdhit
https://github.com/soedinglab/MMseqs2
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

python 3.8.2 Van Rossum'%° https://www.python.org/
matplotlib 3.4.3 Hunter'*' https://matplotlib.org/
numpy 1.21.2 Harris et al.%? https://numpy.org/

pandas 1.3.2 McKinney'%® https://pandas.pydata.org/
plotly 5.2.1 Plotly Technologies Inc, 2015 https://plot.ly

scipy 1.7.1 Virtanen et al.’®* https://www.scipy.org
scikit-learn 0.24 Pedregosa et al.'®® https://scikit-learn.org/
scikit-bio 0.5.6 The scikit-bio development http://scikit-bio.org/

BioPython 1.7.9
eggnog-mapper v2

HMMer 3.3+dfsg2-1
FastTree 2.1
FastANI v.1.33
Megahit 1.2.9
AMPIify

Ampir
AMPScanner v2

APIN
amPEPpy 1.0
Al4AMP

RNAcode 0.2-beta
Bwa v.0.7.17
Statsmodels 0.14.0
mOTUs2

SAMtools 1.18
BEDtools v2.31.0
Clustal Omega 1.2.2
Diamond v2.1.8

team, 2020'%°
Cock et al.’%”

Cantalapiedra et al.'®®

Eddy'®®
Price et al.""®
Jain et al."""
Lietal.'"?
Lietal.””

Fingerhut et al
|'53

|'4O

Veltri et a

Su et al.*®

Lawrence et a
| 56

|.54

Lineta

Washietl et al.®®
Lietal.'™

Seabold and Perktold '
Milanese et al.’"®
Lietal.'®

Quinlan and Hall'"”
Sievers et al.'"®

Buchfink et al.'"®

https://biopython.org/
https://github.com/eggnogdb/
eggnog-mapper

http://hmmer.org/
http://www.microbesonline.org/fasttree/
https://github.com/ParBLiSS/FastANI
https://github.com/voutcn/megahit/
https://github.com/bcgsc/AMPIify
https://github.com/Legana/ampir

https://www.dveltri.com/ascan/
v2/ascan.html

https://github.com/zhanglabNKU/APIN
https://github.com/tlawrence3/amPEPpy

https://github.com/LinTzuTang/
Al4AMP_predictor

https://github.com/ViennaRNA/RNAcode
https://github.com/Ih3/bwa
https://www.statsmodels.org
https://github.com/motu-tool/mOTUs
https://github.com/samtools/samtools
https://github.com/arg5x/bedtools2
http://clustal.org/omega/
https://github.com/bbuchfink/diamond

Blast+ 2.13.0 Camacho et al.'° https://blast.ncbi.nim.nih.gov/doc/
blast-help/downloadblastdata.html

Other

ProGenomes2 Mende et al.** http://progenomes.embl.de/

DRAMP - Data repository
of antimicrobial peptides 3.0

UniprotKB 2021_03
Eggnog v.5.0
SmProt database v.2.0

StarPep45k
PFAM 33.1.
AntiFAM v.7.0

GTDB 07-RS95
NCBI release 207

Shi et al.*®

The UniProt Consortium '’
Huerta-Cepas et al.®°

Hao et al.*
Aguilera-Mendoza et al.”’
Mistry et al.'??

Eberhardt et al.'*®

Parks et al.?%%°

NCBI Resource Coordinators'?*
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http://bigdata.ibp.ac.cn/
SmProt/index.html

http://mobiosd-hub.com/starpep
http://pfam.xfam.org/
https://www.ebi.ac.uk/research/
bateman/software/antifam-tool-
identify-spurious-proteins
https://gtdb.ecogenomic.org/
https://ftp.ncbi.nih.gov/refseqg/release/
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Database of Antimicrobial Activity
and Structure of Peptides - DBAASP

Antimicrobial peptides database - APD3

Salmonella Typhimurium small
ORFs - STsORFs

Pirtskhalava et al.”®

Wang and Wang”*
Venturini et al.*°

https://dbaasp.org/home

https://aps.unmc.edu/

https://academic.oup.com/microlife/
article/1/1/ugqaa002/5928550

#supplementary-data

CARD - Comprehensive Antibiotic Alcock et al.'®
Resistance Database

https://card.mcmaster.ca/

Kyoto Encyclopedia of Genes and Kanehisa et al.'*® https://www.genome.jp/kegg/
Genomes (KEGG) release 102

Biosamples database Courtot et al.”?” http://www.ebi.ac.uk/biosamples
European Nucleotide Archive - ENA Harrison et al.'*® https://www.ebi.ac.uk/ena
Proteomics Identification Database - PRIDE Jones et al.'*? https://www.ebi.ac.uk/pride/

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Luis Pedro
Coelho (luispedro@big-data-biology.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability

o Metagenomes and Genomes data are publicly available at the European Nucleotide Archives (ENA) as of the date of publica-
tion. Their accession numbers are listed in Table S1. AMPSphere is available as a public online resource (https://ampsphere.
big-data-biology.org/), and its files have been deposited in Zenodo and are publicly available as of the date of publication. DOIs
are listed in the key resources table.

e All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOlIs are listed in the key
resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Bacterial strains and growth conditions

The pathogenic strains Acinetobacter baumannii ATCC 19606, Escherichia coli ATCC 11775, Escherichia coli AIC221 [Escherichia
coli MG1655 phnE_2FRT (control strain for AIC 222)], Escherichia coli AIC222 [Escherichia coli MG1655 pmrA53 phnE_2FRT (poly-
myxin-resistant; colistin-resistant strain)], Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa PAO1, Pseudomonas
aeruginosa PA14, Staphylococcus aureus ATCC 12600, Staphylococcus aureus ATCC BAA-1556 (methicillin-resistant strain),
Enterococcus faecalis ATCC 700802 (vancomycin-resistant strain), and Enterococcus faecium ATCC 700221 (vancomycin-resistant
strain) were grown and plated on Luria-Bertani (LB) agar plates and incubated overnight at 37°C from frozen stocks. After incubation,
one isolated colony was transferred to 6 mL of medium (LB), and cultures were incubated overnight (16 h) at 37°C. The following day,
inocula were prepared by diluting the overnight cultures 1:100 in 6 mL of the respective media and incubating them at 37°C until bac-
teria reached logarithmic phase (ODggg = 0.3-0.5).

The gut commensal strains Akkermansia muciniphila ATCC BAA-635, Bacteroides fragilis ATCC 25285, Bacteroides thetaiotaomi-
cron ATCC 29148, Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482 (Phocaeicola vulgatus), Collinsella aerofa-
ciens ATCC 25986, Clostridium scindens ATCC 35704, and Parabacteroides distasonis ATCC 8503 were grown in brain heart infusion
(BHI) agar plates enriched with 0.1% (v/v) vitamin K3 (1 mg mL~"), 1% (v/v) hemin (1 mg mL~", diluted with 10 mL of 1 N sodium
hydroxide), and 10% (v/v) L-cysteine (0.05 mg mL~"), from frozen stocks and incubated overnight at 37°C. Resazurin was used
as an oxygen indicator. After the incubation period, a single isolated colony was transferred to 3 mL of BHI broth and incubated over-
night at 37°C. The next day, inocula were prepared by diluting the bacterial overnight cultures 1:100 in 3 mL of BHI broth and incu-
bated at 37°C until cells reached the logarithmic phase (ODggo = 0.3-0.5).
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Skin abscess infection mouse model

To assess the anti-infective efficacy of the peptides against A. baumannii ATCC 19606 in a skin abscess infection mouse model, the
bacteria were cultured in tryptic soy broth (TSB) medium until an ODggg of 0.5 was reached. Next, the cells were washed twice with
sterile PBS (pH 7.4) and suspended to a final concentration of 5- 10° colony-forming units (CFU) per mL~". Six-week-old female CD-1
mice, after being anesthetized with isoflurane, were subjected to a superficial linear skin abrasion on their backs in an area that they
could not touch with their mouth or limbs. An aliquot of 20 pL containing the bacterial load was then administered over the abraded
area. A single dose of the peptides diluted in water at their MIC value was administered to the infected area 2 h after the infection. The
animals were euthanized two- and four-days post-infection, and the infected area was extracted and homogenized for 20 min using a
bead beater (25 Hz) and 10-fold serially diluted for CFU quantification on MacConkey agar plates for easy differentiation of
A. baumannii colonies. The experimental groups consisted of 3 mice CD-1 per group (n = 3), all female, and each mouse was infected
with an inoculum from a different colony to ensure variability. The animals were single caged to avoid cross-contamination. All the
mice were used three days after arrival from the commercial provider. The skin abscess infection mouse model was approved by
the University Laboratory Animal Resources (ULAR) from the University of Pennsylvania (Protocol 806763).

METHOD DETAILS

Selection of microbial (meta)genomes

Selection of metagenomes and genomes to compose the AMPSphere was similar to that adopted by Coelho et al.**'*° Public meta-
genomes available on 1 January 2020 produced with lllumina instruments (except for MiSeq, to ensure the consistency and reliability
of the meta-analysis findings), with at least 2 million reads and, on average, 75 bp long, were downloaded from the European Nucle-
otide Archive (ENA). These samples met two criteria: (1) they were tagged with taxonomy ID 408169 (for metagenome) or were a
descendant of it in the taxonomic tree; and/or (2) they came from experiments with the library source listed as “METAGENOMIC”.
Samples were grouped by project and all projects with at least 20 samples were included for analysis. Additionally, metagenomes
deposited by the Integrated Microbial Genomes System (IMG) missing from ENA were also included. Metadata was manually curated
from each sample’s describing literature and Biosamples database.'’ For habitat classification groups were created based on the
similarity of habitat conditions, such as air, anthropogenic, aquatic, host-associated, ph:alkaline, sediment, terrestrial, and others.
The sample origins and information related to host species were obtained using the NCBI taxonomic identification number. High-
quality microbial genomes were selected from ProGenomes2 database.*® The resulting 63,410 publicly available metagenomes
and 87,920 high-quality microbial genomes are listed in Table S1.

Reads trimming and assembly

Reads were processed using NGLess,*® trimming positions with quality lower than 25 and discarding reads shorter than 60 bp post-
trimming. Metagenomes obtained from a host-associated microbiome passed through a filtering of reads mapping to the host
genome when available. Reads totaling more than 14.7 trillion base pairs of sequenced DNA were assembled with MEGAHIT
1.2.9'"? and the taxonomy of the 16,969,685,977 contigs generated was inferred as previously described,’®' using MMSeqs2%°
to map the sequences against the GTDB release 95.°®°° Mapped taxonomy lineages were then manually curated to conform to
the International Code of Nomenclature of Prokaryotes.'3>'%*

smORF and AMP prediction

Analogously to Sberro et al.,*® we used a modified version of Prodigal®* to predict smORFs (33-303 bp) from contigs. The
4,599,187,424 redundant smORFs, most of which (99.25%) originated in metagenomes, were then de-duplicated to optimize the
computational resource usage, yielding 2,724,621,233 non-redundant smORFs. Macrel*® was run on the de-duplicated smORFs
to predict c_AMPs. Singleton sequences (those appearing in a single sample or genome) were eliminated, except when they had
a significant match (amino acid identity > 75% and E-value < 10~°) to a sequence from the Data Repository of Antimicrobial Peptides
(DRAMP)“® version 3.0 using the ‘easy-search’ method from MMSeqs2.% In total, AMPSphere encompassed 863,498 non-redun-
dant predicted c_AMPs encoded by 5,518,294 redundant genes. AMP densities were estimated as the number of AMPs per assem-
bled base pairs in a sample or a species.

AMP genes originating from ProGenomes2*® had the taxonomy of the original genome assigned to them, whereas AMP genes
from metagenomes were assigned the taxonomy predicted for the contig where they were found. Insights about potential structural
conformations were obtained using the function secondary_structure_fraction from the ProtParam module implemented in the
SeqUltils in Biopython.'®” This function calculates the fraction of amino acids tend to assume conformations of helix [VIYFWL],
turn [NPGS], and sheet [EMAL].

Clustering of AMP families

Clustering peptides by sequence identity is only possible at high identities as short low-/medium-identity matches are possible by
chance. Therefore, aiming to recover matches where basic features are preserved even if individual amino acids are not iden-
tical,"**"*> we used a reduced amino acids alphabet of 8 letters®® - [LVIMC], [AG], [ST], [FYW], [EDNQ], [KR], [P], [H]. c_AMPs
were hierarchically clustered after alphabet reduction using three sequential identity cutoffs (100%, 85%, and 75%) with CD-Hit.”®
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A cluster was considered an AMP family when it consisted of at least 8 sequences.*® Representative sequences of peptide clusters
were selected according to their length (taking the longest) with ties being broken by their alphabetical order.

To validate this clustering procedure, we used a sample of 3,000 sequences randomly sampled from AMPSphere, excluding clus-
ter representatives. These sequences were aligned against the representative sequence of their cluster using the Smith-Waterman
algorithm'*® with the BLOSUM 62 cost matrix, and gap open and extension penalties of —10 and —0.5, respectively. The alignment
score was then converted to an E-value according to the model by Karlin and Altschul,'*” which uses the values of k (0.132539) and A
(0.313667) constants adjusted to search for a short input sequence as implemented in the BLAST algorithm.'?%"*® Alignments were
considered significant if their E-value was less than 1075, We found that more than 95.3% of alignments produced in the first two
levels (100% and >85% of identity) were significant, along with 77.1% of those from the third level (>75% of identity) — see
Figure S3.

Quality control of c_ AMPs
The c_AMPs in AMPSphere were submitted to another six AMP prediction systems (AMPScanner v2,°° ampir*® - with the model for
mature peptides, amPEPpy,>* APIN®® — with their proposed model, AI4AMP,*® and AMPLify*").

The genes of c_AMPs were subjected to five different quality tests to reduce the likelihood that the observed peptides were arti-
facts or fragments of larger proteins. Initially, the peptides were searched against AntiFam v.7.0'?* using HMMSearch, '°° which was
designed to identify commonly recurring spuriously predicted ORFs, with the option “—cut_ga”. Fewer than 0.05% of c_AMPs had
any significant hits.

For each smORF, we searched for an in-frame stop codon upstream of its start codon. When no stop codon is found, we cannot
rule out the possibility that the smORF is part of a larger gene which we cannot observe due to fragmented assembly. Most (68.4 %) of
the c_AMPs are encoded by at least one gene that is not terminally placed. However, the fact that a c_AMP is terminal does not imply
that the given c_AMP is an artifact since the AMP genes are short enough to be recovered even in short contigs. For example, 72.9%
(4,622/6,339) of homologs to DRAMP“ version 3.0 were found as terminal c_AMPs in AMPSphere.

The RNAcode®® program predicts protein-coding regions based on evolutionary signatures typical for protein genes. This analysis
depends on a set of homologous and non-identical genes. Therefore, AMP clusters containing at least three gene variants were
aligned. Given that an extensive portion of the AMPSphere candidates (53%; 459,910 out of 863,498) is not part of such a cluster,
they could not be tested. Of the tested c_AMPs, 53% (215,421 out of 403,588) were considered genes with evolutionary traits of pro-
tein-coding sequences.

We then checked for evidence of transcription and/or translation using 221 publicly available metatranscriptomes, comprising hu-
man gut (142), peat (48), plant (13), and symbionts (17); and 109 publicly available metaproteomes from PRIDE'*® database
comprising from 37 habitats - Table S6. Using bwa v.0.7.17,""® reads from the metatranscriptomes were mapped against non-redun-
dant AMP genes, and, using NGLess,® we selected genes with at least one read mapped across a minimum of two samples to in-
crease our confidence. This approach is similar to that adopted when predicting AMPs.*? Using regular expressions implemented in
Python 3.8,"°° k-mers of all AMPSphere peptides (with length equal to at least half the length of the sequence) were compared to
peptide sequences in metaproteomics data. A perfect match between a k-mer and a metaproteomic peptide was considered addi-
tional evidence that this c_AMP is likely to be translated, as described by Ma et al.® Briefly, the number of c_AMP peptides mapped
against the set of metaproteomic samples was counted, and those c_AMP peptides with at least one match covering more than 50%
of the peptide were marked as detected. c_AMPs with experimental evidence in metatranscriptomes and/or metaproteomes ac-
counted for circa 20% of the AMPSphere.

The mapping of c_AMPs was performed without considering genomic context, which may have led to an overestimation of can-
didates being identified as potentially transcribed. For example, if they are homologous to longer proteins the presence of the longer
gene may lead to a false positive detection of the shorter c_AMP. We investigated this using Fisher’s Exact Test to compare the
percentage of AMP homologs to the GMGCv1°? database with experimental evidence of translation (3.4% - 2,073 out of 61,020
peptides, Odds Ratio = 4.3, Prighers exact < 107°°°) and/or transcription (22.8% - 13,901 out of 61,020 peptides, Odds Ratio = 1.2,
Peisher's exact = 6.7 - 107" 08). The results suggest that our approach tends to slightly overestimate the potential transcription and trans-
lation of candidates with canonical-length homologs.

Given that only a small number of transcriptomic or proteomics dataset were available and the afore-mentioned limitations in in-
terpreting the mappings, we considered AMPs passing all quality-control tests to be high-quality, regardless of evidence of trans-
lation or transcription. We further separated those with experimental evidence of translation/transcription (17,115 c_AMPs, circa
2% of AMPSphere) and those without it (63,098 c_AMPs, circa 7%). For c_AMP families, we considered high-quality those where
>75% of its c_AMPs pass all quality control tests or those with at least one c_AMP possessing experimental evidence of transla-
tion/transcription.

Sample-based c_ AMPs accumulation curves

To determine the saturation of c_AMP discovery, for each habitat or group of habitats, we computed sample-based accumulation
curves by randomly sampling metagenomes in steps of 10 metagenomes. This procedure was repeated 32 times, and the average
was taken.
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Multi-habitat and rare c_ AMPs

We first counted c_AMPs present in >2 habitats (“multi-habitat AMPs”). To then test the significance of this value, we opted for a
similar approach to that described in Coelho et al.®*: habitat labels for each sample were shuffled 100 times and the number of re-
sulting multi-habitat c_AMPs was counted. Shuffling labels resulted in 676,489.7 + 4,281.8 multi-habitat c_AMPs by chance for high-
level habitat groups, and in 685,477.17 + 4,369.6 multi-habitat c_AMPs by chance when looking at the habitats individually inside the
high-level groups. The Shapiro-Wilks test was used to check that the resulting data distribution is normal (p = 0.49, for specific hab-
itats; p = 0.1 for high-level habitats). In the original (non-shuffled data), high-level habitat groups presented 93,280 multi-habitat
c_AMPs (136.21 standard deviations below shuffled value), while specific habitats presented 173,955 multi-habitat c_AMPs
(117.1 standard deviations below shuffled value).

To determine the rarity of c_AMPs, we adapted the protocol previously established by Coelho et al.” in which the non-redundant
genes in AMPSphere were mapped against the reads of metagenome samples using NGLess.?® We considered only uniquely map-
ped reads. From the mapping, we computed the c_AMPs detected per sample and the number of detections per c_AMP, considering
“rare” c_AMPs as those detected less than the average of the entire AMPSphere (682 detections or 1% of all samples as previously
described for species’'®®). This approach was adopted to overcome the high computational costs of a competitive mapping proced-
ure. We expect that our approach overestimates how prevalent c_AMPs are, and because of that, it is a robust way to estimate the
rarity of c_AMPs.

As the high-quality designation requires at least 3 gene variants for the RNAcode test to be performed, the rarest genes will not be
high-quality. However, for robustness, we quantified this effect by computing the mean and median number of detections in only the
high-quality c_AMPs and only non-terminal c_AMPs (a test which does not require a minimum number of genes). The mean number
of detections is 682 for the full collection, 789 for high-quality c_AMPs, and 679 for non-terminal ones.

|.52

Testing c_AMPs overlap across habitats

Like was done when testing the significance of the number of multi-habitat c_AMPs observed, the number of overlapping c_AMPs
was computed for each pair of habitats. We shuffled the sample labels 1,000 times, counting the number of randomly overlapping
c_AMPs for each pair of habitats. Then, we estimated the probability of observing the overlap by Chebyshev’s inequality, which does
not rely on any assumption regarding the distribution of the data as we observed, using the Shapiro-Wilk’s test, that the shuffled
counts do not follow a normal distribution. Chebyshev’s inequality is p < % where Z stands for the Z score computed from the
average and standard deviations estimated by the shuffling procedure. The p-values were adjusted using Holm-Sidak implemented
in multipletests from the statsmodels package,''* and those below 0.05 were considered significant.

c_AMP density in microbial species
The c_AMP density was defined as payp = "°AL”F’S, where n,,,.. is the number of c_AMP redundant genes and L is the assembled base
pairs. We assume, as an approximation, that in a large segment assembled, the start positions of AMP genes are independent and

uniformly random. Then, we calculated the standard sample proportion error with the formula: STDerr = \/M. The standard

sample proportion error was used to calculate the margin of error at a 95% confidence interval (Z = 1.96,« = 0.05).

To gain insights about the contributions of different phyla, species, and genera to the AMPSphere, we calculated the c_AMP den-
sity for these taxonomy levels using the c_AMPs included within AMPSphere, summing all assembled base pairs for contigs assigned
to each taxonomy level in the samples used in AMPSphere. The payp of genera, phyla and species within a margin of error superior to
10% of the calculated value were eliminated along with outliers according to Tukey’s fences (k = 1.5). We estimated species’ pres-
ence and abundance in each sample using mOTUs2."'® None of the genera with the highest ps (Algorimicrobium, TMED78,
SFJ001, STGJO1, and CAG-462) were highly prevalent microbes.

c_AMPs and bacterial species transmissibility

We used the species taxonomy and transmissibility indices calculated by Valles-Colomer et al.”? to demonstrate the effect of AMPs
on the transmission of bacterial species from mother to children. Only those species overlapping AMPSphere and the datasets from
Valles-Colomer et al.”? were used for this analysis, and their AMP densities were calculated as described in the previous section
(c_AMP density in microbial species), using all the predicted c_AMPs from metagenomes and genomes we obtained, also including
those not in AMPSphere, to avoid sampling bias. The AMP density and the coefficient of transmissibility were correlated using Spear-
man’s method implemented in the scipy package'**: following children’s microbiome after 1, 3, and up to 18 years, as well as, cohab-
itation and intra-datasets. The p-values of correlations were corrected using Holm-Sidak implemented in the multipletests function
from the statsmodels package.''*

Determination of accessory AMPs

To uncover the prevalence of c_AMPs through the microbial pangenomes, core, shell, and accessory c_AMP clusters were deter-
mined using the subset of c_AMPs obtained from ProGenomes2*® because of their high-confidence assigned taxonomies and ge-
nomically-defined species (specl'*‘). To increase confidence in our measures, only species containing at least 10 genomes were
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used in this analysis. c_AMPs and AMP families present in fewer than 50% of the genomes from a microbial species were classified
as accessory. c_AMPs and families present in 50%-95% of the genomes in the cluster were classified as shell,"*" and those present
in >95% of the genomes were classified as core genes.®®

To determine the propensity of AMPs being shared between genomes belonging to the same strain, we first defined strains within
species. For this, we used FastANIv.1.33""" to cluster genomes from the same species in ProGenomes2.** Genome groups with ANI
>99.99% were considered clonal complexes and only a single representative of each clonal complex was kept for further analyses.
Species that had fewer than 10 genomes after this step were not considered further in this analysis. Next, we inferred strains (99.5%
< ANI <99.99%) as in Rodriguez et al.'*? We then counted the pairs of genomes from the same species sharing AMPs, stratified by
whether the pair originates from the same strain or not, and tested the results with Fisher's Exact Test implemented in the scipy
package.'

To determine the proportions of accessory, shell and core full-length proteins in the microbial pangenomes, we also extracted the
predicted full-length proteins from the ENA database for each genome and hierarchically clustered them after alphabet reductionin a
similar fashion to that described in the topic “AMP families”. Full-length protein clusters with >8 sequences for each species were
kept. The prevalence of full-length protein families within a species was computed as above and the number of core families was
compared to the number of c_AMP core families using the probability, calculated as number of species with proportion of core
full-length protein families less or equal to that observed for c_AMPs divided by the total of assessed species.

To determine the genotype of Mycoplasma pneumoniae genomes in ProGenomes2,*® we extracted the gene coding for P1 adhe-
sin’® by mapping the reference gene sequence NZ_LR214945.1:c568695-567307 against each genome with bwa v.0.7.17""% and
later extracted the sequences using with SAMtools''® and BEDtools."'” The extracted gene sequences were aligned using Clustal
Omega,''® and a phylogenetic tree was built using the aligned nucleotide sequences and FastTree 2''° with the restricted time-
reversible substitution model and a bootstrapping procedure with 1,000 pseudo-replicates to determine node support. The tree
was used to segregate and classify genomes taking the strain type of reference genomes from Diaz et al.””

Annotation of AMPs using different datasets

To detect homologs to previously published proteins, we aligned AMPSphere candidates against several databases: (i) the small pro-
tein sets in SmProt 2,*° (ji) the bioactive peptides database starPepDB 45k, (iii) the small proteins from the global data-driven
census of Salmonella,” (iv) the global microbial gene catalog GMGCv1,%? (v) and the AMP database DRAMP“® version 3.0. To strictly
avoid any artifacts of assembly for the analysis, only c_AMPs which passed the terminal placement test (i.e., for which there was
strong evidence that the ORF is indeed complete) were searched against the GMGCv1.°> The AMPs were annotated using
MMseqs2% with the ‘easy-search’ method, retaining hits with an E-value up to 10~°. As Macrel*® removes the starting methionine
from the peptides it outputs, hits starting at the second amino acid were treated as if they matched the first one.

We used the hypergeometric test implemented in the scipy package'®* to model the association between c_AMPs and the back-
ground distribution of ortholog groups from GMGCv1.%? The number of genes that were redundant in GMGCv1°? for each ortholog
group was computed along with the counts for ortholog groups in the top hits to AMPSphere. The enrichment was given as the pro-
portion of hits present in a given ortholog group divided by the proportion of that ortholog group among the redundant sequences in
GMGCv1,°? and results were considered significant if p < 0.05 after correction with the Holm-Sidak method implemented in multi-
pletests from the statsmodels package.''* When using a robust approach that filters the ortholog groups by the number of c_AMP
hits and GMGCv1°? hits associated with them, using a minimum of 10, 20, or even 100 proteins, the results were kept similar to those
obtained with all data showing that the extension of the ortholog groups in AMPSphere did not affect the enrichment analysis.

To check for genomic entities generated after gene truncation, we screened for c_AMP homologs using the default settings for
Blastn'?° against the NCBI database, '>* keeping only significant hits with a maximum E-value of 1075, As a case study, we selected
the AMP10.271_016, predicted to be produced by Prevotella jejuni, which shares the start codon with the gene coding for a NAD(P)-
dependent dehydrogenase (WP_089365220.1). To verify the gene disposition and putative mutations leading to the AMP creation,
we used Biopython'®” to codon-align the fragments from metagenomic contigs assembled from samples SAMN09837386,
SAMNO09837387, and SAMNO09837388, and genomic fragments of different strains of Prevotella jejuni CD3:33 (CP023864.1:
504836-504949), FO106 (CP072366.1:781389-781502), F0697 (CP072364.1:1466323-1466436), and from Prevotella melaninogen-
ica strains FDAARGOS_760 (CP054010.1:157726-157839), FDAARGOS_306 (CP022041.2:943522-943635), FDAARGOS_1566
(CP085943.1:1102942-1103055), and ATCC 25845 (CP002123.1:409656-409769) and compared the segments coding for the
AMP and the original full-length protein.

Genomic context conservation analysis

To gain insights into the gene synteny involving AMP genes, we mapped the 863,498 AMP sequences against a collection of 169,632
reference genomes, metagenome-assembled genomes (MAGs) and single amplified genomes (SAGs) curated elsewhere®' with
DIAMOND'"® in “blastp” mode, as previously reported.®’ Hits with identity >50% (amino acid) and query and target coverage
>90% were considered significant. The target coverage threshold avoids hits to larger homologs whose function may be unrelated.
This yielded 107,308 AMPs with homologs in at least one genome. We built gene families from the hits of each AMP detected in the
prokaryotic genomes and calculated a conservation score based on the functional annotation of the neighboring genes in a window
of three genes up and downstream. The vertical conservation score at each position within the window of each c_AMP was
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calculated as the number of genes with a given functional annotation (ortholog group, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway, KEGG orthology, KEGG module, '® PFAM 33.1, %2142 and CARD'25; details of annotation and annotated database
described previously®"). divided by the number of genes in the family. AMPs with more than two hits and a vertical conservation score
>0.9 with any functional term were considered to have conserved genomic contexts. Figure 4 shows genomic context conservation
of different KEGG pathways.

For testing whether the fraction of AMPs with conserved genomic neighbors is similar to that of other gene families within the
169,632 genomes curated by del Rio et al.,°" we calculated genomic context conservation on 3,899,674 gene families calculated
de novo with MMSeqgs2°° (using a minimal amino acid identity of 30%, coverage of the shorter sequence of at least 50%, and
maximum E-value of 10~2). The c_AMPs were also annotated using EggNOG-mapper v2.'% Their KO annotations were compared
to that of the immediate neighbors (+/— 1 positions) to identify neighborhoods with the same function. It was possible to annotate
56.1% (60,173 out of 107,308) of c_AMPs with hits to the genomes tested using the EggNOGS5 database.®® Of these, 18.1% were
assigned to translation-related functions (class J), 14.4% belong to proteins of unknown function (S), 9% were assigned to replica-
tion, recombination, and repair (L).

AMPSphere web resource

AMPSphere is found at the address https://ampsphere.big-data-biology.org/. The implementation is based on Python'®° and Vue
Javascript. The database was built with sqlite, and SQLalchemy was used to map the database to Python objects. Internal and
external APIs were built using FastAPI and Gunicorn to serve them. On the front end, Vue 3 was used as the backbone and Quasar
built the layout. Plotly was used to generate interactive visualization plots, and Axios to render content seamlessly. LogoJdS (https://
logojs.wenglab.org/app/) was used to generate sequence logos for AMP families; while the helical wheel app (https://github.com/
clemlab/helicalwheel) was used to generate AMP helical wheels.

Peptide selection for synthesis and testing
We selected two groups of peptides: (i) 50 peptides that were selected as being particularly likely to be active and that were otherwise
interesting (as described below), (ii) 50 peptides selected randomly after applying technical exclusions.

For the first group, only high-quality (see the topic “quality control of c_AMPs”) c_AMPs were considered for synthesis. They were
further filtered according to six criteria for solubility'** and three criteria for synthesis, as in PepFun."*® We estimated the solubility
using the criteria implemented in PepFun,’*® observing that 67.4% (581,749 peptides) passed at least half of the solubility criteria
evaluated. The subset that is homologous to peptides in DRAMP“® version 3.0 had a slightly lower rate, 44.3% passed half the tests.
We then assessed the peptides regarding their ease of synthesis, however, only 21.2% from AMPSphere passed at least 2 out of the
3 criteria established for chemical synthesis.

A peptide approved for at least six of the above-mentioned criteria was then filtered by predicting AMP activity with six methods in
addition to Macrel*?: AMPScanner v2,°° the mature peptides model in ampir,*® amPEPpy,>* APIN°® — with their proposed model,
Al4AMP,*® and AMPLIfy.>” Peptides predicted to be AMPs by all methods were filtered by length, discarding sequences longer
than 40 amino acid residues, for which conventional solid-phase peptide synthesis using Fmoc strategy has lower yields and
many recoupling reactions.’*®"'*® Only one peptide was kept from each family or cluster, namely the one with the highest number
of observed smORFs. After this process, we obtained 364 candidate AMPs, belonging to 166 families and 198 clusters with <8
c_AMPs. Of these, 30 candidates were homologous to sequences from the databases used in annotation (e.g., SmProt 2°°). To
compose the list of 50 high-likelihood candidates: (i) we selected 34 of the most prevalent peptides; (ii) we randomly selected 14
c_AMPs (30% of our set) with homologs to the GMGCv1°? and one that matched SmProt 2*°; and (jii) we included one peptide
that was found in the MAGs binned from stool samples used to investigate fecal transplantations.’“® We also included scrambled
sequences made using five of the most active peptide sequences to verify the potency of randomly generated sequences.

To build the group of randomly selected peptides, we first selected c_AMPSs that are not homologous to any other databases tested
and that passed the abovementioned synthesis criteria (total of 768,061 out of 863,498 peptides). We further divided this group into
subgroups: (i) those with Macrel-assigned probability >0.6 (271,555 c_AMPs) and (ii) those in the range 0.5-0.6 (496,506 c_AMPs;
note that all c_AMPs in AMPSphere have a Macrel-assigned probability >0.5). We randomly sampled 25 peptides from each group.

Minimal inhibitory concentration (MIC) determination

The 100 AMPs were tested for antimicrobial activity using the broth microdilution method.'*° MIC values were considered as the con-
centration of the peptides that killed 100% of cells after 24 h of incubation at 37°C. First, peptides diluted in water were added to
untreated flat-bottom polystyrene microtiter 96-well plates in 2-fold dilutions ranging from 64 to 1 umol L™, and then peptides
were exposed to an inoculum of 2-10° cells in LB or BHI broth, for pathogens and gut commensals, respectively. After the incubation
time, the absorbance of each well representing each of the conditions was analyzed using a spectrophotometer at 600 nm. The as-
says were conducted in three biological replicates to ensure statistical reliability.

Circular dichroism assays

Circular dichroism experiments were conducted using a J1500 circular dichroism spectropolarimeter (Jasco) at the Biological Chem-
istry Resource Center (BCRC) of the University of Pennsylvania. The experiments were carried out at a temperature of 25°C. Circular
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dichroism spectra were obtained by averaging three accumulations using a quartz cuvette with an optical path length of 1.0 mm. The
spectra were recorded in the wavelength range from 260 to 190 nm at a scanning rate of 50 nm min~" with a bandwidth of 0.5 nm. The
peptides were tested at a concentration of 50 umol L~'. Measurements were performed in water, a mixture of water and trifluoroe-
thanol (TFE) in a ratio of 3:2, and a mixture of water and methanol in a ratio of 1:1. Baseline measurements were recorded prior to each
measurement. To minimize background effects, a Fourier transform filter was applied. The helical fraction values were calculated
using the single spectra analysis tool available on the BeStSel server.”®

Outer membrane permeabilization assays

Membrane permeability was analyzed using the 1-(N-phenylamino)naphthalene (NPN) uptake assay. NPN demonstrates weak fluo-
rescence in an extracellular environment but displays strong fluorescence when in contact with lipids from the bacterial outer mem-
brane. Thus, NPN will show increased fluorescence when the integrity of the outer membrane is compromised. A. baumannii ATCC
19606 and P. aeruginosa PAO1 were cultured until cell numbers reached an ODgqg of 0.4, followed by centrifugation (10,000 rpm at
4°C for 3 min), washing, and resuspension in buffer (5 mmol L~ HEPES, 5 mmol L~ glucose, pH 7.4). Subsequently, 4 uL of NPN
solution (working concentration of 0.5 mmol L) was added to 100 uL of bacterial solution in a white flat bottom 96-well plate. The
fluorescence was monitored at Aex = 350 nm and A¢m = 420 nm. The peptide solutions in water (100 pL solution at their MIC values)
were introduced into each well, and fluorescence was monitored as a function of time until no further increase in fluorescence was
observed (30 min). The relative fluorescence was calculated using a non-linear fit. The positive control (antibiotic polymyxin B) was
used as baseline. The following equation was applied to reflect % of difference between the baseline (polymyxin B) and the sample:

100 X (fluorescencesampe — flUOrescencepoymyxing)

Relative fluorescence =
fluorescencepoymyxins

Cytoplasmic membrane depolarization assays

The ability of the peptides to depolarize the cytoplasmic membrane was assessed by measuring the fluorescence of the membrane
potential-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide [DiSCs-(5)]. This potentiometric fluorophore fluoresces upon release
from the interior of the cytoplasmic membrane in response to an imbalance of its transmembrane potential. A. baumannii ATCC
19606 and P. aeruginosa PAO1 cells were grown with agitation at 37°C until they reached mid-log phase (ODgpo = 0.5). The cells
were then centrifuged and washed twice with washing buffer (20 mmol L~ glucose, 5 mmol L~! HEPES, pH 7.2) and re-suspended
to an ODggo of 0.05 in 20 mmol L™ glucose, 5 mmol L~ HEPES, 0.1 mol L~ KCl, pH 7.2. An aliquot of 100 uL of bacterial cells was
added to a black flat bottom 96-well plate and incubated with 20 nmol L™ of DiSC3-(5) for 15 min until the fluorescence stabilized,
indicating the incorporation of the dye into the cytoplasmic membrane. The membrane depolarization was monitored by observing
the change in the fluorescence emission intensity of the dye (Aex = 622 Nnm, Ao, = 670 Nm), after the addition of the peptides (100 pL
solution at their MIC values). The relative fluorescence was calculated using a non-linear fit. The positive control (antibiotic polymyxin
B) was used as baseline. We estimated the % of difference between the baseline (polymyxin B) and the sample using the same math-
ematical approach as in the “Outer membrane permeabilization assays”.

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs for the experimental results were created and statistical tests conducted in GraphPad Prism v.9.5.1 (GraphPad Software, San
Diego, California USA).

ADDITIONAL RESOURCES

151

AMPSphere is freely available for download in Zenodo'”' and as a web server (https://ampsphere.big-data-biology.org/).
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Figure S1. General physical-chemical features of c_AMPs in AMPSphere and validated databases of antimicrobial peptides, related to

Figure 1

Shown are density curves; the arbitrary density units are not shown, as all curves are independently normalized so the area under the curve is one. For each
dataset and feature, the top 1% and bottom 1% of values were considered outliers and are not shown in the plot. Proportions of residues with small side chains
[A,C,D,G,N, P, S, T, V] perc_AMP along with the proportions of basic residues [H, R, K] per c_AMP were also shown. The distributions of each feature were
compared among the datasets using the Mann-Whitney test with multiple hypothesis testing corrected using Holm-Sidak. Almost all differences are significant
(adjusted p value < 0.05). The exceptions are: aliphatic index did not differ between the peptides from DRAMP version 3“° and the ones present in the positive

training set used in Macrel*? (Pyann = 0.71); AMPSphere peptides did not differ from the positive training set used in Macre

1*? in the fraction of aromatic (Pyann =

0.58), non-polar (Pmann = 0.97), polar (Pmann = 0.97), and acidic (Pmann = 0.69) residues; the instability index (omann = 0.58) and the hydrophobicity (Opmann = 0.31) of
AMPSphere peptides also were not different from the positive training set used in Macrel.*?
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Figure S2. c_AMP quality and habitat distribution, related to Figures 1 and 2

(A) Quality assessment of AMPSphere revealed most of the peptides passed at least one of the tests. The RNAcode test depends on gene diversity, which is very
low for AMPSphere, which led to a low rate of positives among our candidates.

(B) c_AMPs homologous to databases of validated bioactive peptides also showed a higher average quality of these datasets.

(C) The limited overlap of c_AMPs among habitats argues in favor of using habitat groups to gain resolution. Note that the group of habitats with the highest paired
overlaps belongs to human body sites and samples from human guts and non-human mammalian guts. Only habitats with at least 100 samples were shown.
(D) We observed a large proportion of rare genes in AMPSphere from different habitat groups.
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Figure S3. Clustering validation of families, related to STAR Methods section “Clustering of AMP families”
To validate the clustering procedure using a reduced amino acid alphabet, samples of 1,000 peptides were randomly drawn from AMPSphere (excluding
representative sequences) and aligned against their cluster representatives. Three different levels (1, Il, and Ill) of clustering were tested. The E-values were
computed per alignment and plotted against the corresponding alignment identity. The averaged proportion of significant alignments is shown in each

graph above.
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Figure S4. Antimicrobial activity of polymyxin B and levofloxacin and circular dichroism spectra of the c_AMPs, related to STAR Methods
section “Circular dichroism assays”
(A) Minimal inhibitory concentration values for polymyxin B, a peptide antibiotic, and levofloxacin against all the strains tested. Polymyxin B and levofloxacin were
used as positive controls in all antimicrobial assays.
(B-D) The c_AMPs’ secondary structural tendency was analyzed using three different solvents: (B) water, (C) trifluoroethanol (TFE) and water mixture (3:2, V:V),
and (D) methanol (MeOH) and water mixture (1:1, V:V). The experiments were carried out at 25°C, and the circular dichroism spectra shown are an average of
three accumulations obtained using a quartz cuvette with an optical path length of 1.0 mm, ranging from 260 to 190 nm at a rate of 50 nm min~" and a bandwidth
of 0.5 nm. All peptides were tested at a concentration of 50 pmol L™, with respective baselines recorded prior to measurement. A Fourier transform filter was
applied to minimize background effects.
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Figure S5. Antimicrobial activity and secondary structure of scrambled versions of some of the lead c_ AMPs, related to Figures 6 and 7
(A) MIC values of the scrambled versions of five of the lead c_AMPs from AMPSphere tested against the same 11 pathogenic strains and eight gut commensal
strains used to assess the activity of the c_AMPs.

(B-D) The scrambled peptides’ secondary structural tendency was analyzed using three different solvents: (B) water, (C) TFE and water mixture (3:2, V:V), and (D)
MeOH and water mixture (1:1, V:V). The experiments were carried out in the same conditions as the ones used for the c_AMPs. A Fourier transform filter was
applied to minimize background effects.

(E) Heatmap with the percentage of secondary structure found for each peptide in three different solvents: water, 60% TFE in water, and 50% MeOH in water.
Secondary structure was calculated using BeStSel server.”®
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Figure S6. Mechanism of action of AMPSphere peptides and anti-infective activity of c_AMPs in a preclinical animal model, related to
Figures 6 and 7

(A) Fluorescence values relative to polymyxin B (PMB, positive control) of the fluorescent probe 1-(N-phenylamino)naphthalene (NPN) that indicate outer
membrane permeabilization of P. aeruginosa PAO1 cells.

(B) Fluorescence values relative to PMB (positive control) of 3,3'-dipropylthiadicarbocyanine iodide (DiSC3-[5]), a hydrophobic fluorescent probe used to indicate
cytoplasmic membrane depolarization of P. aeruginosa PAO1 cells.

(C) Bacterial counts four days post-infection; the c_AMPs were tested at their MIC in a single dose 1 h after the establishment of the infection. Each group
consisted of three mice (n = 3), and the bacterial loads used to infect each mouse were derived from a different inoculum.

(D) Mouse weight throughout the experiment (mean + the standard deviation).

Statistical significance in (C) was determined using one-way ANOVA where all groups were compared to the untreated control group; p values are shown for each
of the groups. Features on the violin plots represent median and upper and lower quartiles. Figure created in BioRender.com.
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