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SUMMARY
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-
learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and
leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and
host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-
redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolu-
tionary origins of peptides, including by duplication or gene truncation of longer sequences, andweobserved
that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs
against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo.
A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial
activity by disrupting bacterial membranes. In conclusion, our approach identified nearly onemillion prokary-
otic AMP sequences, an open-access resource for antibiotic discovery.
INTRODUCTION

Antibiotic-resistant infections are becoming increasingly difficult

to treat with conventional therapies.1 Indeed, such infections

currently kill 1.27 million people per year.2 Therefore, there is

an urgent need for novel methods for antibiotic discovery.
Cell 187, 3761–3778,
This is an open access article under the
Computational approaches have recently been developed to

accelerate our ability to identify novel antibiotics, including anti-

microbial peptides (AMPs).3–9 Recently, proteome mining ap-

proaches have even been developed to identify antimicrobial

agents in extinct organisms in an attempt to further expand our

repertoire of known antimicrobials.10
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AMPs, found in all domains of life,11–14 are short sequences

(operationally defined here as 10–100 amino acid residues15)

capable of disturbing microbial growth.12,15 AMPs most com-

monly interfere with cell wall integrity and cause cell lysis.12,16

Natural AMPs can originate by proteolysis,4,17 by non-ribosomal

synthesis,18 or, as we focus on in the present study, they can be

encoded within the genome.19

Bacteria live in an intricate balance of antagonism and mutu-

alism in natural habitats. AMPs play an important role in modu-

lating such microbial interactions and can displace competitor

strains, facilitating cooperation.20 For instance, pathogens

such as Shigella spp.,21 Staphylococcus spp.,22 Vibrio chole-

rae,23 and Listeria spp.24,25 produce AMPs that eliminate com-

petitors (sometimes from the same species), allowing them to

occupy their niche.

AMPs hold promise as potential therapeutics and have already

been used clinically as antiviral drugs (e.g., enfuvirtide and telapre-

vir26). AMPs that exhibit immunomodulatory properties are

currently undergoing clinical trials,27 as are peptides that may be

used to address yeast and bacterial infections28 (e.g., pexiganan,

LL-37, and PAC-113). Although most AMPs display broad-spec-

trumactivity, someareonlyactiveagainst closely relatedmembers

of the same species or genus.29 Such AMPs are more targeted

agents thanconventionalbroad-spectrumantibiotics.30,31Further-

more, contrary to conventional antibiotics, the evolution of resis-

tance to many AMPs occurs at low rates and is not related to

cross-resistance to other classes of widely used antibiotics.4,32,33

The application of metagenomic analyses to the study of

AMPs has been limited due to technical constraints, primarily

stemming from the challenge of distinguishing genuine protein-

coding sequences from false positives.34 Therefore, the sig-

nificance of small open reading frames (smORFs) has been his-

torically overlooked in (meta)genomic analyses.35–37 In recent

years, significant progress has been made in metagenomic ana-

lyses of human-associated smORFs.6,38 These advancements

have incorporated machine learning (ML) techniques to identify

smORFs encoding proteins belonging to specific functional cat-

egories.39–42 Notably, a recent study used predicted smORFs to

uncover approximately 2,000 AMPs frommetagenomic samples

of human gut microbiomes.6 Nevertheless, it is important to note

that the human gut represents only a fraction of the overall micro-

bial diversity, suggesting that there remains an immense poten-

tial for the discovery of AMPs from prokaryotes in the diverse

range of habitats across the globe.

In this study, we employed ML to predict and catalog AMPs

from the global microbiome as currently represented in public

databases. By computationally exploring 63,410 publicly avail-

able metagenomes and 87,920 high-quality microbial geno-

mes,43 we uncovered a vast array of AMP diversity. This resulted

in the creation of the AMPSphere, a collection of 863,498 non-

redundant peptide sequences, encompassing candidate AMPs

(c_AMPs) derived from (meta)genomic data. Remarkably, the

majority of these c_AMP sequences had not been previously

described. Our analysis revealed that these c_AMPs were spe-

cific to particular habitats and were predominantly not core

genes in the pangenome.

Moreover, we synthesized 100 c_AMPs from AMPSphere and

found that 79 were active, with 63 exhibiting antimicrobial activ-
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ity in vitro against clinically significant ESKAPEE pathogens,

which are recognized as public health concerns.44,45 These pep-

tides were further compared to encrypted peptides (EPs), which

are peptide sequences hidden in protein sequences and mined

computationally,4,10 and demonstrated their ability to target bac-

terial membranes and their propensity to adopt a-helical and

b-structures. Notably, the leading candidates displayed prom-

ising anti-infective activity in a preclinical animal model.

Together, our work demonstrates the ability of ML approaches

to identify functional AMPs from the global microbiome.

RESULTS

AMPSphere comprises almost 1 million c_AMPs from
several habitats
AMPSphere incorporates c_AMPs predicted with ML using Ma-

crel,42 a pipeline that uses random forests to predict AMPs from

large peptide datasets with an emphasis on precision over recall.

It was applied to 63,410 globally distributed publicly available

metagenomes (Figure 1A; Table S1) and 87,920 high-quality bac-

terial and archaeal genomes.43 Sequences present in a single

sample were removed,42 except when they had a significant ma-

tch (definedas aminoacid identityR75%andE-value%10⁻⁵) to a

sequence in the AMP-dedicated database Data Repository of

Antimicrobial Peptides (DRAMP) version 3.0.46 This resulted in

5,518,294 genes, 0.1% of the total predicted smORFs, coding

for 863,498 non-redundant c_AMPs (on average 37 ± 8 residues

long; Figures1AandS1).Similar to validatedsequenceswithanti-

microbial activity,42,47,48 c_AMPs from AMPSphere present a

positive charge (4.7 ± 2.6), high isoelectric point (10.9 ± 1.2), am-

phiphilicity (hydrophobic moment, 0.6 ± 0.1), and a potential to

bind to membranes or other proteins (Boman index, 1.14 ± 1.1).

As expected, in general, the distribution of physicochemical

properties of peptides from AMPSphere, DRAMP46 version 3.0,

and thepositive training dataset used inMacrel42 aremore similar

to each other than to the negative training set (assumed to not be

AMPs). Nonetheless, c_AMPs from AMPSphere are on average

longer (37 ± 8 residues) than those in DRAMP46 version 3.0

(28± 22 residues), andweobserveddifferences in thedistribution

of other features (e.g., charge, aliphaticity, amphipathicity, and

isoelectric point; Figure S1).

We subsequently estimated the quality of the smORF predic-

tions and detected 20% (172,840) of the c_AMP sequences in

independent publicly available metaproteomes or metatran-

scriptomes (Figures 2 and S2A; see STAR Methods section

‘‘Quality control of c_AMPs’’) belonging to several habitats

included in the AMPSphere, such as the human gut, plants,

and others (Table S6). We then subjected all c_AMPs to a bundle

of in silico quality tests (see STARMethods section ‘‘Quality con-

trol of c_AMPs’’). A subset of c_AMPs (9.2% or 80,213 c_AMPs)

passed all of them, and this subset is hereafter designated

as high-quality. Testing with other AMP prediction systems

(AMPScanner v2,53 the model for mature peptides in ampir,40

amPEPpy,54 APIN,55 AI4AMP,56 and AMPLify57), we observed

that 98.4% (849,703 peptides) of AMPSphere c_AMPs were

also predicted as AMPs by at least one other AMP prediction

system. Approximately 15% (132,440 out of 863,498 peptides)

of AMPSphere c_AMPs were co-predicted by all methods used.



Figure 1. AMPSphere comprises 836,498 non-redundant c_AMPs from thousands of metagenomes and high-quality microbial genomes

(A) To build the AMPSphere, we first assembled 63,410 publicly available metagenomes from diverse habitats. A modified version of Prodigal,34 which can also

predict smORFs (30–300 bp), was used to predict genes on the resulting metagenomic contigs as well as on 87,920 microbial genomes from ProGenomes2.43

Macrel42 was applied to the 4,599,187,424 predicted smORFs to obtain 863,498 non-redundant c_AMPs (see also Figure S1). c_AMPs were then hierarchically

clustered in a reduced amino acid alphabet using 100%, 85%, and 75% identity cutoffs. We observed 118,051 non-singleton clusters at 75% of identity, and

8,788 of them were considered families (R8 c_AMPs).

(B) Only 9%of c_AMPs have detectable homologs in other small protein databases (SmProt 2,49 STsORFs50), bioactive peptide databases (DRAMP46 version 3.0,

starPepDB 45k51), and general protein datasets (GMGCv152; see also Figure S2B). Also shown is the number of homologs in the AMPSphere in each database as

well as the total. The number of homologs passing all of our quality tests regardless of their experimental evidence of translation/transcription is also shown along

with the percentage it represents in the homologs identified. Note that some peptides have homologs in multiple databases and thus the total count is not the sum

of the individual databases.

(C) Shown are rarefaction curves showing how AMP discovery is impacted by sampling, with most of the habitats presenting steep sampling curves.

(D) Sharing of c_AMPs between habitats is limited. The width of ribbons represents the proportion of the shared c_AMPs in the habitat on the left. See also

Figures S2C and S2D and Tables S1 and S2.
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Only 0.7% of the identified c_AMPs (6,339 peptides) are ho-

mologous (operationally defined as amino acid identity R75%

and E-value %10⁻⁵) to experimentally validated AMP sequences

in DRAMP version 3.0.46 Moreover, most c_AMPs were also ab-
sent from protein databases not specific to AMPs (Figure 1B),

such as the Small Proteins database (SmProt2)49 or the Glo-

bal Microbiome Gene Catalog of canonical-length proteins

(GMGCv1),52 suggesting that c_AMPs represent a region of
Cell 187, 3761–3778, July 11, 2024 3763



Figure 2. Quality control of AMPSphere can-

didates

(A) The number of AMPSphere candidates passing

each of the tests proposed for quality is shown. The

high-quality set is composed of 7.3% of candidates

without experimental evidence and 2% of candi-

dates with evidence of their translation or tran-

scription, as well as the number of homologs found

in the high-quality set of AMP candidates. Although

the high-quality set displays some overlap with the

homologs, most of the homologs are not found in the

high-quality set.

(B) The number of AMP candidates co-predicted by

AMP prediction systems beyond Macrel (AMPS-

canner v2,53 ampir40 with the model for mature

peptides, amPEPpy,54 APIN55 with their proposed

model, AI4AMP,56 and AMPLify57). Only a small

portion of AMPSphere (<2%) cannot be co-pre-

dicted by any system other than Macrel.42
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peptide sequence space that is not present in these other data-

bases. In total, we could find only 73,774 (8.5%) c_AMPs with

homologs in any of the databases we considered. High-quality

c_AMPs were detected in public databases at a higher fre-

quency than general c_AMPs (2.5-fold, pHypergom. = 4.2 3

10�250; Figure 1B), with 23,012 out of the 80,213 high-quality

c_AMPs having a match in another database. However, it is

notable that 76.4% (4,843 peptides out of 6,339) of those

c_AMPs that have a homolog in DRAMP46 version 3.0 (and,

therefore, are highly likely to be functional) are not high-quality

c_AMPs. Thus, while our quality tests do enrich for validated se-

quences, a failure to pass the tests is not a sufficient reason to

conclude that the sequence is not active.

To put c_AMPs in an evolutionary context, we hierarchically

clustered peptides using a reduced amino acid alphabet of 8 let-

ters.58 The three sequence clustering levels adopted identity cut-

offs of 100%, 85%, and 75% (Figure S3). At the 75% identity

level, we obtained 521,760 protein clusters, of which 405,547

were singletons, corresponding to 47% of all c_AMPs from

AMPSphere. A total of 78,481 (19.3%) of these singletons were

detected in metatranscriptomes or metaproteomes from various

sources, indicating that they were not artifacts. The large number

of singletons suggests that most c_AMPs originated from pro-

cesses other than diversification within families, which is the

opposite of the hypothesized origin of full-length proteins, in

which singleton families are rare.52 The 8,788 clusters with R8

peptides obtained at 75% of identity are hereafter named ‘‘fam-

ilies,’’ as in Sberro et al.38 Among them, we considered 6,499 as

high-quality families because they contained evidence of trans-

lation or transcription or because R75% of their sequences

pass all in silico quality tests, regardless of whether experimental

evidence is available (see STAR Methods section ‘‘AMP fam-

ilies’’). These high-quality families span 15.4% of the AMP-

Sphere (133,309 peptides).

All the c_AMPs predicted here can be accessed at https://

ampsphere.big-data-biology.org/. Users can retrieve the peptide

sequences, ORFs, and predicted biochemical properties of each

c_AMP (e.g., molecular weight, isoelectric point, and net charge

at pH 7.0). We also provide the distribution across geographical

regions, habitats, and microbial species for each c_AMP.
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c_AMPs are rare and habitat-specific
The AMPSphere spans 72 different habitats, which were classi-

fied into eight high-level habitat groups, e.g., soil/plant (36.6% of

c_AMPs in AMPSphere), aquatic (24.8%), and human gut (13%;

Figure 1A; Table S2). Most of the habitats, except for the human

gut, appear to be far from saturated in terms of discovered

c_AMPs (Figure 1C). In fact, most AMPs are rare (median number

of detections is 99, or 0.17% of the dataset; when restricted to

high-quality c_AMPs, the median number of detections is 81,

or 0.14% of the dataset), with 83.97% being observed in <1%

of samples (Figure S2). Only 10.8% (93,280) of c_AMPs were de-

tected in more than one high-level habitat group (henceforth

termed ‘‘multi-habitat c_AMPs’’); this fraction is 7.25-fold smaller

than would be expected by a random assignment of habitats to

samples (pPermutation < 10�300; see STAR Methods section

‘‘Multi-habitat and rare c_AMPs’’). Even within high-level habitat

groups, c_AMPs overlap between habitats much less frequently

than expected by chance (2.4–192-fold less, pPermutation < 5.4 3

10�50; see STAR Methods section ‘‘Testing c_AMPs overlap

across habitats’’; Figure 1D).

Mutations in larger genes generate c_AMPs as
independent genomic entities
Many AMPs are generated post-translationally by the fragmen-

tation of larger proteins.17 For example, EPs are computationally

detected fragments from protein sequences within the human

proteome and other proteomes that have been shown to be

highly active.4,10 EPs present diverse secondary structures and

act on the membrane of bacterial cells similarly to known natural

AMPs but have different physicochemical features compared to

known AMPs.4,33 AMPSphere only considered peptides en-

coded by dedicated genes. Nonetheless, we hypothesized that

some of these have originated from larger proteins by fragmen-

tation at the genomic level. To explore this, we aligned the

AMPSphere c_AMPs to the full-length proteins in GMGCv152

and observed that about 7% (61,020) of them are homologous

to a canonical-length protein (Figure 1B), with 27% of these

hits sharing the start codon with the longer protein. This sug-

gests early termination of full-length proteins as one mechanism

for generating novel c_AMPs (Figures 3A and 3B).

https://ampsphere.big-data-biology.org/
https://ampsphere.big-data-biology.org/


Figure 3. Mutations in genes encoding la-

rge proteins generate c_AMPs as indepen-

dent genomic entities

(A) The distribution of positions (as a percentage of

the length of the larger protein) from which the

AMP homologs start their alignment is shown.

About 7% of c_AMPs are homologous to proteins

fromGMGCv1,52 with approximately one-fourth of

the hits having the same start position as the larger

protein.

(B) As an illustrative example of an AMP homolo-

gous to a full-length protein, AMP10.271_016 was

recovered from three samples of human saliva

from the same donor.59 AMP10.271_016 is pre-

dicted to be produced by Prevotella jejuni, sharing

the start codon (bolded) of an NAD(P)-dependent

dehydrogenase gene (WP_089365220.1), the

transcription of which was stopped by a mutation

(in red; TGG > TGA).

(C) The distribution of AMPs per OG class (left) and

their enrichment in comparison to full-length pro-

teins from GMGCv152 (right). OGs were classified

into subgroups according to the number of c_

AMPs they were affiliated with. The OGs of un-

known function represent the largest (2,041 out of

3,792 OGs) and most enriched (pKruskal = 2.66 3

10�39) class with homologs to c_AMPs in

GMGCv1.52 Interestingly, when considered indi-

vidually, the number of c_AMP hits to unknown

OGs was the lowest (pKruskal = 6 3 10�3). These

results do not change when underrepresented

OGs are excluded by using different thresholds

(e.g., at least 10, 20, or 100 homologs per OG). See

also Table S3.
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To investigate the function of the full-length proteins homolo-

gous to AMPs, we mapped the matching proteins from

GMGCv152 to orthologous groups (OGs) from eggNOG 5.0.60

We identified 3,792 (out of 43,789) OGs significantly enriched

(pHypergeom. < 0.05, after multiple hypothesis corrections with

the Holm-Sidak method) among the hits from AMPSphere.

Although OGs of unknown function comprise 53.8% of all iden-

tified OGs, when considered individually, these OGs are on

average smaller than OGs in other categories. Thus, despite

each OG having a relatively small number of c_AMP hits, when

compared to the background distribution of the OGs in

GMGCv1,52 OGs of unknown function were the most enriched

among the c_AMP hits, with an average enrichment of 10,857-

fold (pMann % 3.9 3 10�4; Figure 3C; Table S3).

c_AMP genes may arise after gene duplication events
We next raised the question of whether c_AMPs would be pre-

dominantly present in specific genomic contexts. To investigate

the functions of the neighboring genes of the c_AMPs, we map-

ped them against 169,484 genomes included in a recent study.61

A total of 38.9% (21,465 out of 55,191) of c_AMPswithmore than

two homologs in different genomes in the database showed

phylogenetically conserved genomic context with genes of

known function (see STAR Methods section ‘‘Genomic context

conservation analysis’’). This holds true for curated versions of

the catalog: 35.32% of high-quality c_AMPs and 32.06% of

high-quality c_AMPs with experimental evidence show

conserved genomic neighbors. These conservation values are

similar to that of 3,899,674 gene families with more than two ho-

mologs calculated de novo on the gene catalog (34.4%), indi-

cating that the genomic location of c_AMPs is not random.

Despite being involved in similar processes, c_AMPs were

generally depleted from conserved genomic contexts involving

known systems of antibiotic synthesis and resistance, even

when compared to small protein families (Figure 4). Instead,

we found that c_AMPs are encoded in conserved genomic con-

texts with ribosomal genes (23.6%) at a higher frequency than

other gene families (4.75%; Figure 4A; Table S4).

Most of the c_AMPs (2,201 out of 2,642) in a conserved

context with ribosomal subunits are homologous to ribosomal

proteins (Figure 4D), congruent with the observation that in

some species, ribosomal proteins have antimicrobial prope-

rties.62 Seventy-seven c_AMPs homologous to ribosomal pro-

teins were also homologous to a ribosomal gene in their immedi-

ate vicinity (up to 1 gene up/downstream). This phenomenon is

not exclusive to ribosomal proteins: 1,951 c_AMPs can be anno-

tated to the same KEGG Orthologous Group (KO) as some of

their immediate neighbors and may have originated from gene

duplication events. This shared annotation was interpreted in

this context as evidence for a common evolutionary origin and

not as a functional prediction for the c_AMPs. These duplications

may have arisen by recombination of flanking homologous se-

quences, which can happen during cell division.63–65 Interest-

ingly, 1,635 (83.8%) of these c_AMPs are located upstream of

the neighbor with the same KO annotation. Different permeases

and transposases are the most common KOs assigned to

c_AMPs and their neighbors (400 and 125 c_AMPs, respectively;

see Table S5).
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Most c_AMPs are members of the accessory
pangenome
We observed that only a small portion (5.9%, pPermutation = 4.83

10�3, NSpecies = 416) of c_AMP families present in Pro-

Genomes243 are contained in R95% of genomes from the

same species (Figure 5), here referred to as ‘‘core.’’66 This is

consistent with previous work, in which AMP production was

observed to be strain-specific.67 In contrast, a high proportion

(circa 68.8%) of full-length protein families are core in Pro-

Genomes243 species. There is a 1.9-fold greater chance (pFisher =

2.2 3 10�92) that a pair of genomes from the same species

share at least one c_AMP when they belong to the same strain

(99.5% % ANI <99.99%).

One example of this strain-specific behavior is AMP10.018_

194, the only c_AMP found in Mycoplasma pneumoniae ge-

nomes. M. pneumoniae strains are traditionally classified into

two groups based on their P1 adhesin gene.70 Of the 76

M. pneumoniae genomes present in our study, 29were classified

as type-1, 29 were classified as type-2, and the remaining 18

were undetermined in this classification system71 (see STAR

Methods section ‘‘Determination of accessory AMPs’’). Twe-

nty-six of the 29 type-2 genomes contain AMP10.018_194, as

did 2 undetermined type genomes, but none of the type-1 ge-

nomes contain this AMP.

More transmissible species have lower c_AMP density
We investigated the taxonomic composition of AMPSphere by

annotating contigs with the Genome Taxonomy Database

(GTDB) taxonomy68,69 (see STARMethods section ‘‘c_AMP den-

sity in microbial species’’), which resulted in 570,187 c_AMPs

being annotated to a genus or species. The genera contributing

the most c_AMPs to AMPSphere were Prevotella (18,593 c_

AMPs), Bradyrhizobium (11,846 c_AMPs), Pelagibacter (6,675

c_AMPs), Faecalibacterium (5,917 c_AMPs), and CAG-110

(5,254 c_AMPs; see Figure 5). This distribution reflects the fact

that these genera are among those that contribute the most

assembled sequences in our dataset (all occupying percentiles

above 99.75% among the assembled genera). Therefore, we

calculated the c_AMP density (⍴AMP) by determining the number

of c_AMP genes per megabase pairs of assembled sequence.

To avoid bias due to the unequal sampling of habitats, we

included all the sequences predicted by Macrel42 in each sam-

ple, including singleton sequences that were subsequently

removed and are not part of AMPSphere.

To further explore the importance of AMP production in

ecological processes, we investigated the role of AMPs in the

mother-to-child transmissibility of bacterial species in a recently

published paper72 by correlating the rAMP for each bacterial spe-

cies to the published measures of microbial transmission. Hu-

man gut bacteria showed increased transmissibility at lower

AMP densities (RSpearman = �0.42, pHolm-Sidak = 3.4 3 10�2,

NSpecies = 43). Similarly, in human oral microbiome bacterial spe-

cies, transmissibility from mother to offspring is consistently

inversely correlated with their rAMP for the first year (RSpearman =

�0.55, pHolm-Sidak = 1.43 10�3,NSpecies = 41). This suggests that

human gut bacteria and oral microbiome bacterial species show

increased transmissibility at lower rAMP. Moreover, it highlights

the potential influence of rAMP on the transmissibility of gut and



Figure 4. The genome context of c_AMPs shows a preference for neighborhoods containing ribosome assembly proteins
(A) Compared to other proteins, c_AMPs in conserved genomic architectures tend to be closer to ribosomal-machinery-related genes than families of proteins

with different sizes (all length and small proteins with %50 amino acids).

(B) The proportion of c_AMPs in a genome context involving antibiotic resistance genes is lower than in other gene families.

(C) The proportion of c_AMPs in neighborhoods with antibiotic-synthesis-related genes is very small (<0.25%).

(D) The conserved genomic context of the gene encoding AMP10.015_426 is shown in different genomes (the tree on the left depicts the phylogenetic relationship

of the genes homologous to it). This c_AMP is homologous to the ribosomal protein rpsH and is found in the context of rpsH and other ribosomal protein genes.

See also Table S4.
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oral microbiota, suggesting a link between AMPs and the trans-

mission success rates of microbial species.

Physicochemical features and secondary structure
of AMPs
To investigate the properties and structure of the synthesized

peptides, we first compared their amino acid composition to

AMPs from available databases of experimentally verified se-

quences (DRAMP46 version 3.0, Database of Antimicrobial Activ-

ity and Structure of Peptides [DBAASP],73 and Antimicrobial

Peptides Database [APD]74 version 3). Overall, the composition

was similar, as was expected, given that Macrel’s ML model

was trained using known AMPs.42 Notably, AMPSphere se-

quences displayed a slightly higher abundance of aliphatic

amino acid residues, specifically alanine and valine. However,

these AMPSphere sequences consistently differed (Figure 6A)

from EPs.4,10,33 The resemblances in amino acid composition

between the identified c_AMPs and known AMPs suggested

similar physicochemical characteristics and secondary struc-

tures, both of which are recognized for their influence on antimi-

crobial activity.16 The c_AMPs exhibited comparable hydropho-
bicity, net charge, and amphiphilicity to AMPs sourced from

databases (Figure S1). Furthermore, they displayed a slight pro-

pensity for disordered conformations (Figure 6B) and had a lower

net positive charge compared to other EPs (Figure 6A).

To evaluate the structural and antimicrobial properties of

c_AMPs from AMPSphere, we first filtered the AMPSphere for

peptides that were predicted as suitable for in vitro assays due

to their solubility in aqueous solution and ease of chemical syn-

thesis. We chose a set of high-quality AMPs with 50 peptide se-

quences based on their prevalence and taxonomic diversity (see

STAR Methods section ‘‘Peptide selection for synthesis and

testing’’). Additionally, to provide an unbiased evaluation of the

peptides we report here, we first excluded any peptides with a

homolog in one of the published databases and then randomly

selected 50 additional peptides from the AMPSphere, including

25 peptides with AMP probabilities of at least 0.6 (as reported by

Macrel42) and 25 peptides with lower probabilities (0.5–0.6).

Subsequently, we conducted experimental assessments of

the secondary structure of the active c_AMPs using circular di-

chroism (Figures 6B and S4). Similar to AMPs documented in da-

tabases, peptides derived from AMPSphere exhibited different
Cell 187, 3761–3778, July 11, 2024 3767



Figure 5. AMP variation in AMPSphere database is taxonomy-dependent

(A) Shown are the fractions of AMPs (or AMP families) that are accessory (present in <50% of genomes from same species), shell (50%–95%), or core (R95%).

(B) Distribution of the lowest taxonomic level at which c_AMPswere annotated. In detail (right) are the top 10 generawith the highest numbers of c_AMPs included

in AMPSphere. Animal-associated genera (e.g., Prevotella, Faecalibacterium, and CAG-110) contribute the most c_AMPs, possibly reflecting data sampling.

(C) Using the ⍴AMP per genus (calculated with c_AMPs in AMPSphere), we observed the distribution of c_AMPs per phylum, with Bacillota A as the densest (the

number of samples used to build the graph is shown above each box).

(D) Taxonomy of the detected taxa in AMPSphere is shown using the GTDB68,69 reference tree. The gray bars show ⍴AMP distribution with respect to taxonomy,

with black bars representing the confidence interval of 95%. Bacillota A, Actinomycetota, and Pseudomonadota are the densest phyla in c_AMPs. As a reference,

the median of ⍴AMP for the presented genera is indicated by a magenta dashed line.
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propensities for adopting a-helical structures; also, some of

them were unstructured or adopted b-antiparallel conformations

in all media analyzed. Notably, they also displayed an unusually

high content of b-antiparallel structures in both water and meth-

anol/water mixtures (Figure 6B) despite their amino acid compo-

sition similarities to AMPs and EPs.We attribute these findings to

the slightly elevated occurrence of alanine and valine residues,

which are known to favor b-like structures with a preference

for b-antiparallel conformation.76

Validation of c_AMPs as potent antimicrobials through
in vitro assays
Next, we tested the 100 synthesized peptides against 11 clini-

cally relevant pathogenic strains encompassing Acinetobacter

baumannii, Escherichia coli (including one colistin-resistant

strain), Klebsiella pneumoniae, Pseudomonas aeruginosa, Stap-

hylococcus aureus (including one methicillin-resistant strain),

vancomycin-resistant Enterococcus faecalis, and vancomycin-

resistant Enterococcus faecium. Our initial screening revealed

that 63 AMPs (out of 100 synthesized) completely eradicated
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the growth of at least one of the pathogens tested (Figure 6C).

Remarkably, in some cases, the AMPs were active at concentra-

tions as low as 1 mmol L�1, close to the peptide antibiotic poly-

myxin B and the antibiotic levofloxacin that were used as positive

controls in all experiments (Figure S4A). The Gram-negative bac-

teria A. baumannii and E. coli, as well as the Gram-positive van-

comycin-resistant strains E. faecalis and E. faecium, displayed

higher susceptibility to the AMPs, with 39, 24, 21, and 26 peptide

hits, respectively. However, none of the tested AMPs affected

methicillin-resistant S. aureus (MRSA) (Figure 6C). We also syn-

thesized and tested the scrambled versions of five of the most

active peptides from the high-quality group for antimicrobial ac-

tivity (i.e., actinomycin-1, enterococcin-1, lachnospirin-1, prote-

obacticin-1, and synechocucin-1). All scrambled versions were

inactive except for lachnospirin-1_scrambled, which presented

modest activity against A. baumannii at 32 mmol L�1 (16 times

higher concentration compared to its parent peptide lachno-

spirin-1; Figure S5A). These results underscore the importance

of the specific sequence of these peptides to exert their antimi-

crobial activity. To further explore the influence of sequence on



Figure 6. Amino acid composition, structure, antimicrobial activity, and mechanism of action of c_AMPs

(A) Amino acid frequency in c_AMPs fromAMPSphere, AMPs from databases (DRAMP46 version 3, APD3,74 and DBAASP73), and encrypted peptides4 (EPs) from

the human proteome.

(B) Heatmap with the percentage of secondary structure found for each peptide in three different solvents: water, 60% trifluoroethanol (TFE) in water, and 50%

methanol (MeOH) in water. Secondary structure was calculated using BeStSel server.75

(C) Activity of c_AMPs assessed against ESKAPEE pathogens and human gut commensal strains. Briefly, 106 CFU mL�1 was exposed to c_AMPs 2-fold serially

diluted ranging from 64 to 1 mmol L�1 in 96-well plates and incubated at 37 �C for one day. After the exposure period, the absorbance of each well was measured

at 600 nm. Untreated solutions were used as controls, and minimal concentration values for complete inhibition were presented as a heatmap of antimicrobial

activities (mmol L�1) against 11 pathogenic and eight human gut commensal bacterial strains. All the assays were performed in three independent replicates, and

the heatmap shows the mode obtained within the 2-fold dilution concentration range studied. Gram-positive (+) and Gram-negative (�) bacteria are indicated as

such (top).

(legend continued on next page)
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structure, we assessed the secondary structure tendency of the

scrambled peptides using circular dichroism. We noticed a

decrease in helical fraction for sequences with higher helical

content (enterococcin-1, lachnospirin-1, and synechocucin-1),

while the predominately random coiled sequences actinomy-

cin-1 and proteobactin-1, as well as their scrambled counter-

parts, showed similar secondary structural sequences in all

media analyzed (Figures S5B–S5E). These results suggest a

lack of correlation between secondary structure and antimicro-

bial activity of the AMPs derived from AMPSphere.

The growth of human gut commensals is impaired
by c_AMPs
We screened the AMPs against eight of the most relevant mem-

bers of the human gut microbiota associated with human

health.77–81 We tested commensal bacteria belonging to four

phyla (Verrucomicrobiota, Bacteroidota, Actinomycetota, and

Bacillota), i.e., Akkermansia muciniphila, Bacteroides fragilis,

Bacteroides thetaiotaomicron, Bacteroides uniformis, Phocaei-

cola vulgatus (formerly Bacteroides vulgatus), Collinsella aerofa-

ciens, Clostridium scindens, and Parabacteroides distasonis.

While it is commonly observed that known natural AMPs do

not target microbiome strains,82 our study found that 58 of the

synthesized AMPs (58%) demonstrated inhibitory effects on at

least one commensal strain at low concentrations (8–16 mmol

L�1). Although this concentration range was higher than that

observed for the most active peptides against pathogens (1–

4 mmol L�1), it still falls within the highly active range of AMPs

based on previous studies83–85 (Figure 6C). Interestingly, all the

analyzed gut microbiome strains were susceptible to at least

four c_AMPs, with strains of A. muciniphila, B. uniformis,

P. vulgatus,C. aerofaciens,C. scindens, and P. distasonis exhib-

iting the highest susceptibility. In total, 79 AMPs (out of 100 syn-

thesized peptides) demonstrated antimicrobial activity against

pathogens and/or commensals. We also screened scrambled

sequences of five of the highly active peptides from the high-

quality group against gut commensals. Similarly to the results

obtained against pathogenic strains (Figure S5), only lachno-

spirin-1_scrambled was modestly active against C. scindens at

64 mmol L�1 (Figure S5A).

Permeabilization and depolarization of the bacterial
membrane by c_AMPs from AMPSphere
To gain insights into the mechanism of action responsible for the

antimicrobial activity observed in the peptides derived from

AMPSphere (Figure 6C), we conducted experiments to assess

their ability to permeabilize and depolarize the outer and cyto-

plasmic membranes of bacteria at their minimum inhibitory con-

centrations (MICs). Specifically, we investigated the effects of all

39 peptides that showed activity against A. baumannii (Figures

6D and 6E) and 6 peptides with antimicrobial activity on

P. aeruginosa (Figures S6A and S6B). For comparison and as a
(D) Fluorescence values relative to polymyxin B (PMB, positive control) of the

membrane permeabilization of A. baumannii ATCC 19606 cells.

(E) Fluorescence values relative to PMB (positive control) of 3,30-dipropylthiadicar
cytoplasmic membrane depolarization of A. baumannii ATCC 19606 cells. Depola

the permeabilization of the outer membrane and took approximately 20 min to s
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control, we used polymyxin B, a peptide antibiotic known for

its membrane permeabilization and depolarization properties.4

To investigate the potential permeabilization of the outermem-

branes of Gram-negative bacteria by the selected AMPs, we

conducted 1-(N-phenylamino)naphthalene (NPN) uptake as-

says. NPN is a lipophilic fluorophore that exhibits increased fluo-

rescence in the presence of lipids found within bacterial outer

membranes. The uptake of NPN indicates membrane permeabi-

lization and damage. Among the 39 peptides evaluated for

activity against A. baumannii, 10 peptides caused significant

permeabilization of the outer membrane, resulting in fluores-

cence levels at least 50% higher than that of polymyxin B (Fig-

ure 6D) after 45 min of exposure. In the case of P. aeruginosa

cells, four out of the six tested peptides showed higher permea-

bilization than polymyxin B (Figure S6A).

To evaluate the potential membrane depolarization effect of

the selected AMPs from AMPSphere, we utilized the fluorescent

dye 3,30-dipropylthiadicarbocyanine iodide (DiSC3-[5]). Among

the peptides tested against A. baumannii, bogicin-1 (AMP10.

364_543), ampspherin-2 (AMP10.615_023), and marinobacti-

cin-1 (AMP10.321_460) exhibited greater cytoplasmic mem-

brane depolarization than polymyxin B, and among the ones

tested against P. aeruginosa, all peptides tested exhibited

greater cytoplasmic membrane depolarization than polymyxin

B (Figure 6B). Interestingly, all the tested AMPSphere peptides

displayed a characteristic crescent-shaped depolarization

pattern compared to polymyxin B, with lower levels of depolari-

zation observed during the first 20 min of exposure followed by

an increase in depolarization over time (Figures 6E and S6B).

Taken together, these results indicate that the kinetics of cyto-

plasmic membrane depolarization are slower compared to the

kinetics of outer membrane permeabilization, which occurs

rapidly upon interaction with the bacterial cells.

Our findings indicate that the tested AMPs from AMPSphere

primarily exert their effects by permeabilizing the outer mem-

brane rather than depolarizing the cytoplasmic membrane,

revealing a similar mechanism of action to that observed for clas-

sical AMPs and EPs from the human proteome.4

AMPs exhibit anti-infective efficacy in a mouse model
Next, we tested the anti-infective efficacy of AMPSphere-

derived peptides in a skin abscess murine infection model (Fig-

ure 7A). Mice were subjected to infection with A. baumannii, a

dangerous Gram-negative pathogen known for causing severe

infections in various body sites including the bloodstream, lungs,

urinary tract, and wounds.86 Ten lead AMPs from different sour-

ces displayed potent in vitro activity against A. baumannii:

synechocucin-1 (AMP10.000_211, 8 mmol L�1) from Synecho-

coccus sp. (coral-associated, marine microbiome); proteobacti-

cin-1 (AMP10.048_551, 16 mmol L�1) from Pseudomonadota

(plant and soil microbiome); actynomycin-1 (AMP10.199_072,

64 mmol L�1) from Actinomyces (human mouth and saliva
fluorescent probe 1-(N-phenylamino)naphthalene (NPN) that indicate outer

bocyanine iodide (DiSC3-[5]), a hydrophobic fluorescent probe used to indicate

rization of the cytoplasmic membrane occurred with slow kinetics compared to

tabilize.



Figure 7. Anti-infective activity of AMPs in preclinical animal model

(A) Schematic of the skin abscess mouse model used to assess the anti-infective activity of the peptides against A. baumannii cells.

(B) Peptides were tested at their MIC in a single dose 2 h after the establishment of the infection. Each group consisted of threemice (n = 3), and the bacterial loads

used to infect each mouse were derived from a different inoculum.

(C) To rule out toxic effects of the peptides, mouse weight was monitored throughout the experiment.

Statistical significance in (B) was determined using one-way ANOVAwhere all groupswere compared to the untreated control group; p values are shown for each

of the groups. Features on the violin plots represent median and upper and lower quartiles. Data in (C) are the mean ± the standard deviation. Figure created in

BioRender.com.
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microbiome); lachnospirin-1 (AMP10.015_742, 2 mmol L�1) from

Lachnospira sp. (human gut microbiome); enterococcin-1

(AMP10.051_911, 1 mmol L�1) from Enterococcus faecalis (hu-

man gut microbiome); alphaprotecin-1 (AMP10.316_798,

1 mmol L�1) from Alphaproteobacteria (aquatic microbiome); os-

cillospirin (AMP10.771_988, 8 mmol L�1) from Oscillospiraceae

(pig gut microbiome); ampspherin-4 (AMP10.466_287, 8 mmol

L�1) from an unknown source; methylocellin-1 (AMP10.446_

571, 2 mmol L�1) from Methylocella sp. (soil microbiome); and

reyranin-1 (AMP10.337_875, 16 mmol L�1) from Reyranella (plant

and soil microbiome). The skin abscess infection was estab-

lished with a bacterial load of 20 mL of A. baumannii cells at 106

colony-forming units (CFUs) mL�1 onto the wounded area of

the dorsal epidermis (Figure 7A). A single dose of each peptide

at their respective MIC value obtained in vitro (Figures 6C and

S4A) was administered to the infected area. Two days post-

infection, synechocucin-1, actynomycin-1, and oscillosporin-1

presented bacteriostatic activity, inhibiting the proliferation of

A. baumannii cells, whereas lachnospirin-1, enterococcin-1,

ampspherin-4, and reyranin-1 presented bactericidal activity

close to that of the antibiotic polymyxin B (at 5 mmol L�1),

reducing the CFU counts by 3–4 orders of magnitude (Figure 7B).

Four days post-infection, synechocucin-1, lachnospirin-1,

enterococcin-1, and ampspherin-4 presented a bacteriostatic

effect close to that of the antibiotic polymyxin B, reducing the

CFU counts by 2–3 orders of magnitude compared to the un-

treated control (Figure S6C). These results highlight the anti-
infective potential of the tested peptides from AMPSphere as

they were administered at a single time immediately after the

establishment of the abscess. Mouse weight was monitored as

a proxy for toxicity, and no significant changes were observed

(Figures 7C and S6D), suggesting that the peptides tested

were not toxic.

DISCUSSION

Here, we used ML to identify nearly a million candidate AMPs in

the global microbiome. Building on previous studies that

focused specifically on the human gut microbiome,6,38,87 we

cataloged AMPs from the global microbiome across 63,410 pub-

licly available metagenomes as well as 87,920 high-quality mi-

crobial genomes from the ProGenomes2 database.42 This led

to the creation of AMPSphere (https://ampsphere.big-data-

biology.org/), an open-access and publicly available resource

encompassing 863,498 non-redundant peptides and 6,499

high-quality AMP families from 72 different habitats, including

marine and soil environments and the human gut. Most of the

c_AMPs (91.5%) were previously unknown and lacked de-

tectable homologs in other databases, and about one in five

had evidence of translation and/or transcription, as they could

be detected in independent publicly available sets of metatran-

scriptomes or metaproteomes.

We designed a set of tests to capture higher-quality predic-

tions, but many peptides failed these tests despite evidence
Cell 187, 3761–3778, July 11, 2024 3771
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that they were active, including our own in vitro data and the ex-

istence of validated homologs in external databases. Low-prev-

alence peptides will be less likely to pass the tests (RNAcode88

requires multiple variants), which is independent of their activity

and influenced by sampling biases.

Focusing on candidate AMPs that are directly encoded in the

genome enabled in vitro and in vivo testing using chemical syn-

thesis without post-translational modifications, but there are

otherprocesses thatgenerate activepeptides, suchasencrypted

peptides (EPs),4 which we used as a comparison point. Notably,

the amino acid composition and physicochemical characteristics

of the validated AMPs from AMPSphere differed from those of

recently identified in EPs.4 Two evolutionary mechanisms by

which AMPs may be generated were explored. First, mutations

in genes encoding longer proteins could generate gene frag-

ments via truncation. Among the enrichedortholog groupsof pro-

teins fromGMGCv155 homologous to c_AMPs, we observed that

a majority of groups had unknown function (53.8%), similar to

what was reported by Sberro et al.38 for small proteins from the

human gut microbiome. The second mechanism is that a small

protein gene could undergo a duplication followed by mutation,

which we observed in the case of ribosomal proteins. Ribosomal

proteins can harbor antimicrobial activity,62 possibly due to their

amyloidogenic properties.89 Other origins of AMPs may be hori-

zontal gene transfer90 or ancestral non-coding sequences.91

Nonetheless, the majority of identified AMPs did not have a

detectable homolog in other databases. The lack of observed

homology may be due to limitations in our ability to robustly

detect these homology relationships in small sequences, but

there is also the possibility that small proteins, such as AMPs,

may be more likely to be generated de novo compared to longer

proteins andmay have repeatedly evolved in various taxa.92 This

may also be an explanation for the large fraction of c_AMPs in the

AMPSphere that do not cluster with any other sequences.

We observed that c_AMPs from AMPSphere were habitat-

specific and mostly accessory members of microbial pange-

nomes. Furthermore, four out of the five genera with the most

c_AMPs present in AMPSphere share a host-associated life-

style, and three of these (Prevotella, Faecalibacterium, and

CAG-110) are common in animal hosts93–95 (Figure 5).

Valles-Colomeret al.,72who recently analyzeda largecollection

of human-associated metagenomes, provide a species-specific

index of transmissibility for the several transmission scenarios

they study (e.g., mother to infant). Hypothesizing that AMP pro-

duction may be related to transmission, we correlated the spe-

cies-specific ⍴AMP calculated in AMPSphere with transmission

scores. In both the human gut and oral microbiomes, species

with higher ⍴AMP are less transmissible, possibly because AMPs

confer protection against strain replacement. Taken together,

these results validate the applicability of AMPSphere in the study

of microbial ecology, as they suggest a role for AMPs in deter-

mining the transmissibility and colonization ability of microbes,

which warrants further investigation and validation in future work.

Finally, we experimentally validated predictions made by our

MLmodel42 and found that 79 (out of 100) synthesized AMPs dis-

played antimicrobial activity against either pathogens or com-

mensals. Nonetheless, notably, four peptides (cagicin-1, cagi-

cin-4, and enterococcin-1 against A. baumannii and cagicin-1
3772 Cell 187, 3761–3778, July 11, 2024
and lachnospirin-1 against vancomycin-resistant E. faecium)

presented MIC values as low as 1 mmol L�1, comparable to the

MICs of some of the most potent peptides previously described

in the literature.84,85

We show that the tested AMPs from AMPSphere tended to

target clinically relevant Gram-negative pathogens and showed

activity against vancomycin-resistant E. faecium. Although con-

ventional AMPs do not target bacteria from the human gutmicro-

biome,82 tested AMPs from AMPSphere showed efficacy

against commensal bacteria, suggesting potential ecological

implications of peptides as protective agents for their pro-

ducing organisms and their ability to reconfigure microbiome

communities.

When assessing their activity in vivo, three peptides exhibited

anti-infective efficacy in a murine infection model, with lachno-

spirin-1 and enterococcin-1 being the most potent, resulting in

a reduction of bacterial load by up to three orders of magnitude.

The active peptides included those derived from both human-

associated and environmental microbiota, validating our app-

roach of investigating the global microbiome. Overall, our find-

ings unveil a wide array of AMP sequences without matches in

other databases, highlighting the potential of machine learning

in the discovery of much-needed antimicrobials.

Limitations of the study
We focused on a particular category of AMPs, namely peptides

encoded by their own genes and composed of up to 100 amino

acids, which does not cover all active peptides. We explored the

global microbiome as represented in public databases, and

certain habitats and areas of the globe have been significantly

more explored than others. This uneven coverage also impacts

our quality estimates, as they depend on data availability. We

will, however, continue to update the resource as newer ge-

nomes and metagenomes are made available. We report results

based on finding homologs to our peptides, but matching small

sequences to large databases has a higher rate of errors (partic-

ularly missed matches) than is the case for longer sequences.

Our results on the transmissibility of microbial strains and AMP

density were intended to demonstrate the value of AMPSphere

as a resource, but a full validation of this link will be the focus

of future work. Finally, we tested peptides in vitro and in vivo

against a panel of bacteria. Given that we observed species-

and even strain-specific responses, it is possible that peptides

for which we did not observe any activity would have been active

against strains not tested here.
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(2017). Listeriolysin S is a streptolysin s-like virulence factor that targets

exclusively prokaryotic cells in vivo. mBio 8, e00259-17. https://doi.org/

10.1128/mBio.00259-17.

25. Quereda, J.J., Dussurget, O., Nahori, M.A., Ghozlane, A., Volant, S.,

Dillies, M.A., Regnault, B., Kennedy, S., Mondot, S., Villoing, B., et al.

(2016). Bacteriocin from epidemic Listeria strains alters the host intestinal

microbiota to favor infection. Proc. Natl. Acad. Sci. USA 113, 5706–5711.

https://doi.org/10.1073/pnas.1523899113.

26. Gomes, B., Augusto, M.T., Felı́cio, M.R., Hollmann, A., Franco, O.L.,

Gonçalves, S., and Santos, N.C. (2018). Designing improved active pep-

tides for therapeutic approaches against infectious diseases. Biotechnol.

Adv. 36, 415–429. https://doi.org/10.1016/j.biotechadv.2018.01.004.

27. Lesiuk, M., Paduszy�nska, M., and Greber, K.E. (2022). Synthetic Antimi-

crobial Immunomodulatory Peptides: Ongoing Studies and Clinical Tri-
3774 Cell 187, 3761–3778, July 11, 2024
als. Antibiotics (Basel) 11, 1062. https://doi.org/10.3390/antibiotics

11081062.
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portable and accurate antimicrobial peptide prediction tool. Bioinformat-

ics 37, 2058–2060. https://doi.org/10.1093/bioinformatics/btaa917.

55. Su, X., Xu, J., Yin, Y., Quan, X., and Zhang, H. (2019). Antimicrobial pep-

tide identification using multi-scale convolutional network. BMC Bioinf.

20, 730. https://doi.org/10.1186/s12859-019-3327-y.

56. Lin, T.-T., Yang, L.-Y., Lu, I.-H., Cheng, W.-C., Hsu, Z.-R., Chen, S.-H.,

and Lin, C.-Y. (2021). AI4AMP: an Antimicrobial Peptide Predictor Using

Physicochemical Property-Based Encoding Method and Deep Learning.

mSystems 6, e0029921. https://doi.org/10.1128/mSystems.00299-21.

57. Li, C., Sutherland, D., Hammond, S.A., Yang, C., Taho, F., Bergman, L.,

Houston, S., Warren, R.L., Wong, T., Hoang, L.M.N., et al. (2022).

AMPlify: attentive deep learning model for discovery of novel antimicro-

bial peptides effective against whom priority pathogens. BMC Genom.

23, 77. https://doi.org/10.1186/s12864-022-08310-4.
58. Murphy, L.R., Wallqvist, A., and Levy, R.M. (2000). Simplified amino acid

alphabets for protein fold recognition and implications for folding. Protein

Eng. 13, 149–152. https://doi.org/10.1093/protein/13.3.149.

59. Heintz-Buschart, A., May, P., Laczny, C.C., Lebrun, L.A., Bellora, C.,

Krishna, A., Wampach, L., Schneider, J.G., Hogan, A., de Beaufort, C.,

and Wilmes, P. (2016). Integrated multi-omics of the human gut micro-

biome in a case study of familial type 1 diabetes. Nat. Microbiol. 2,

16180. https://doi.org/10.1038/nmicrobiol.2016.180.

60. Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., For-

slund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J.,

et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogeneti-

cally annotated orthology resource based on 5090 organisms and 2502

viruses. Nucleic Acids Res. 47, D309–D314. https://doi.org/10.1093/

nar/gky1085.
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HEPES Fisher BP310-100

Potassium chloride (KCl) Sigma P3911

Deposited data

Code for generation of AMPSphere This study https://doi.org/10.5281/zenodo.11055585

AMPSphere database This study https://zenodo.org/record/4606582

Experimental models: Organisms/strains

Mouse: CD-1 Charles River 18679700–022

Software and algorithms

NGLess 1.3.0 Coelho et al.96 https://github.com/ngless-toolkit/ngless

JUG 2.1.1 Coelho97 https://github.com/luispedro/jug

Prodigal 2.6.3 Hyatt et al.34 https://github.com/hyattpd/Prodigal

Macrel v.1.0.0 Santos-Júnior et al.42 https://github.com/BigDataBiology/macrel

CDHit 4.8.1 Fu et al.98 https://github.com/weizhongli/cdhit

MMseqs2 Steinegger and Söding99 https://github.com/soedinglab/MMseqs2
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python 3.8.2 Van Rossum100 https://www.python.org/

matplotlib 3.4.3 Hunter101 https://matplotlib.org/

numpy 1.21.2 Harris et al.102 https://numpy.org/

pandas 1.3.2 McKinney103 https://pandas.pydata.org/

plotly 5.2.1 Plotly Technologies Inc, 2015 https://plot.ly

scipy 1.7.1 Virtanen et al.104 https://www.scipy.org

scikit-learn 0.24 Pedregosa et al.105 https://scikit-learn.org/

scikit-bio 0.5.6 The scikit-bio development

team, 2020106
http://scikit-bio.org/

BioPython 1.7.9 Cock et al.107 https://biopython.org/

eggnog-mapper v2 Cantalapiedra et al.108 https://github.com/eggnogdb/

eggnog-mapper

HMMer 3.3+dfsg2-1 Eddy109 http://hmmer.org/

FastTree 2.1 Price et al.110 http://www.microbesonline.org/fasttree/

FastANI v.1.33 Jain et al.111 https://github.com/ParBLiSS/FastANI

Megahit 1.2.9 Li et al.112 https://github.com/voutcn/megahit/

AMPlify Li et al.57 https://github.com/bcgsc/AMPlify

Ampir Fingerhut et al.40 https://github.com/Legana/ampir

AMPScanner v2 Veltri et al.53 https://www.dveltri.com/ascan/

v2/ascan.html

APIN Su et al.55 https://github.com/zhanglabNKU/APIN

amPEPpy 1.0 Lawrence et al.54 https://github.com/tlawrence3/amPEPpy

AI4AMP Lin et al.56 https://github.com/LinTzuTang/

AI4AMP_predictor

RNAcode 0.2-beta Washietl et al.88 https://github.com/ViennaRNA/RNAcode

Bwa v.0.7.17 Li et al.113 https://github.com/lh3/bwa

Statsmodels 0.14.0 Seabold and Perktold114 https://www.statsmodels.org

mOTUs2 Milanese et al.115 https://github.com/motu-tool/mOTUs

SAMtools 1.18 Li et al.116 https://github.com/samtools/samtools

BEDtools v2.31.0 Quinlan and Hall117 https://github.com/arq5x/bedtools2

Clustal Omega 1.2.2 Sievers et al.118 http://clustal.org/omega/

Diamond v2.1.8 Buchfink et al.119 https://github.com/bbuchfink/diamond

Blast+ 2.13.0 Camacho et al.120 https://blast.ncbi.nlm.nih.gov/doc/

blast-help/downloadblastdata.html

Other

ProGenomes2 Mende et al.43 http://progenomes.embl.de/

DRAMP - Data repository

of antimicrobial peptides 3.0

Shi et al.46 http://dramp.cpu-bioinfor.org/

UniprotKB 2021_03 The UniProt Consortium121 https://www.uniprot.org/

Eggnog v.5.0 Huerta-Cepas et al.60 http://eggnog5.embl.de/

SmProt database v.2.0 Hao et al.49 http://bigdata.ibp.ac.cn/

SmProt/index.html

StarPep45k Aguilera-Mendoza et al.51 http://mobiosd-hub.com/starpep

PFAM 33.1. Mistry et al.122 http://pfam.xfam.org/

AntiFAM v.7.0 Eberhardt et al.123 https://www.ebi.ac.uk/research/

bateman/software/antifam-tool-

identify-spurious-proteins

GTDB 07-RS95 Parks et al.68,69 https://gtdb.ecogenomic.org/

NCBI release 207 NCBI Resource Coordinators124 https://ftp.ncbi.nih.gov/refseq/release/
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Database of Antimicrobial Activity

and Structure of Peptides - DBAASP

Pirtskhalava et al.73 https://dbaasp.org/home

Antimicrobial peptides database - APD3 Wang and Wang74 https://aps.unmc.edu/

Salmonella Typhimurium small

ORFs - STsORFs

Venturini et al.50 https://academic.oup.com/microlife/

article/1/1/uqaa002/5928550

#supplementary-data

CARD - Comprehensive Antibiotic

Resistance Database

Alcock et al.125 https://card.mcmaster.ca/

Kyoto Encyclopedia of Genes and

Genomes (KEGG) release 102

Kanehisa et al.126 https://www.genome.jp/kegg/

Biosamples database Courtot et al.127 http://www.ebi.ac.uk/biosamples

European Nucleotide Archive - ENA Harrison et al.128 https://www.ebi.ac.uk/ena

Proteomics Identification Database - PRIDE Jones et al.129 https://www.ebi.ac.uk/pride/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Luis Pedro

Coelho (luispedro@big-data-biology.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Metagenomes and Genomes data are publicly available at the European Nucleotide Archives (ENA) as of the date of publica-

tion. Their accession numbers are listed in Table S1. AMPSphere is available as a public online resource (https://ampsphere.

big-data-biology.org/), and its files have been deposited in Zenodo and are publicly available as of the date of publication. DOIs

are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Bacterial strains and growth conditions
The pathogenic strains Acinetobacter baumannii ATCC 19606, Escherichia coli ATCC 11775, Escherichia coli AIC221 [Escherichia

coli MG1655 phnE_2FRT (control strain for AIC 222)], Escherichia coli AIC222 [Escherichia coli MG1655 pmrA53 phnE_2FRT (poly-

myxin-resistant; colistin-resistant strain)], Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa PAO1, Pseudomonas

aeruginosa PA14, Staphylococcus aureus ATCC 12600, Staphylococcus aureus ATCC BAA-1556 (methicillin-resistant strain),

Enterococcus faecalis ATCC 700802 (vancomycin-resistant strain), and Enterococcus faecium ATCC 700221 (vancomycin-resistant

strain) were grown and plated on Luria-Bertani (LB) agar plates and incubated overnight at 37�C from frozen stocks. After incubation,

one isolated colony was transferred to 6mL of medium (LB), and cultures were incubated overnight (16 h) at 37�C. The following day,

inocula were prepared by diluting the overnight cultures 1:100 in 6 mL of the respective media and incubating them at 37�C until bac-

teria reached logarithmic phase (OD600 = 0.3–0.5).

The gut commensal strains Akkermansia muciniphila ATCC BAA-635, Bacteroides fragilis ATCC 25285, Bacteroides thetaiotaomi-

cron ATCC 29148, Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482 (Phocaeicola vulgatus), Collinsella aerofa-

ciensATCC25986,Clostridium scindensATCC35704, andParabacteroides distasonisATCC8503were grown in brain heart infusion

(BHI) agar plates enriched with 0.1% (v/v) vitamin K3 (1 mg mL�1), 1% (v/v) hemin (1 mg mL�1, diluted with 10 mL of 1 N sodium

hydroxide), and 10% (v/v) L-cysteine (0.05 mg mL�1), from frozen stocks and incubated overnight at 37�C. Resazurin was used

as an oxygen indicator. After the incubation period, a single isolated colony was transferred to 3mL of BHI broth and incubated over-

night at 37�C. The next day, inocula were prepared by diluting the bacterial overnight cultures 1:100 in 3 mL of BHI broth and incu-

bated at 37�C until cells reached the logarithmic phase (OD600 = 0.3–0.5).
Cell 187, 3761–3778.e1–e9, July 11, 2024 e3

mailto:luispedro@big-data-biology.org
https://ampsphere.big-data-biology.org/
https://ampsphere.big-data-biology.org/
https://dbaasp.org/home
https://aps.unmc.edu/
https://academic.oup.com/microlife/article/1/1/uqaa002/5928550%20-%20supplementary-data
https://academic.oup.com/microlife/article/1/1/uqaa002/5928550%20-%20supplementary-data
https://academic.oup.com/microlife/article/1/1/uqaa002/5928550%20-%20supplementary-data
https://card.mcmaster.ca/
https://www.genome.jp/kegg/
http://www.ebi.ac.uk/biosamples
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/pride/


ll
OPEN ACCESS Resource
Skin abscess infection mouse model
To assess the anti-infective efficacy of the peptides against A. baumannii ATCC 19606 in a skin abscess infection mouse model, the

bacteria were cultured in tryptic soy broth (TSB) medium until an OD600 of 0.5 was reached. Next, the cells were washed twice with

sterile PBS (pH 7.4) and suspended to a final concentration of 5$106 colony-forming units (CFU) per mL�1. Six-week-old female CD-1

mice, after being anesthetized with isoflurane, were subjected to a superficial linear skin abrasion on their backs in an area that they

could not touch with their mouth or limbs. An aliquot of 20 mL containing the bacterial load was then administered over the abraded

area. A single dose of the peptides diluted in water at their MIC value was administered to the infected area 2 h after the infection. The

animals were euthanized two- and four-days post-infection, and the infected area was extracted and homogenized for 20min using a

bead beater (25 Hz) and 10-fold serially diluted for CFU quantification on MacConkey agar plates for easy differentiation of

A. baumannii colonies. The experimental groups consisted of 3 mice CD-1 per group (n = 3), all female, and eachmousewas infected

with an inoculum from a different colony to ensure variability. The animals were single caged to avoid cross-contamination. All the

mice were used three days after arrival from the commercial provider. The skin abscess infection mouse model was approved by

the University Laboratory Animal Resources (ULAR) from the University of Pennsylvania (Protocol 806763).

METHOD DETAILS

Selection of microbial (meta)genomes
Selection of metagenomes and genomes to compose the AMPSphere was similar to that adopted by Coelho et al.52,130 Public meta-

genomes available on 1 January 2020 produced with Illumina instruments (except for MiSeq, to ensure the consistency and reliability

of the meta-analysis findings), with at least 2 million reads and, on average, 75 bp long, were downloaded from the European Nucle-

otide Archive (ENA). These samples met two criteria: (1) they were tagged with taxonomy ID 408169 (for metagenome) or were a

descendant of it in the taxonomic tree; and/or (2) they came from experiments with the library source listed as ‘‘METAGENOMIC’’.

Samples were grouped by project and all projects with at least 20 samples were included for analysis. Additionally, metagenomes

deposited by the IntegratedMicrobial Genomes System (IMG)missing fromENAwere also included.Metadata wasmanually curated

from each sample’s describing literature and Biosamples database.127 For habitat classification groups were created based on the

similarity of habitat conditions, such as air, anthropogenic, aquatic, host-associated, ph:alkaline, sediment, terrestrial, and others.

The sample origins and information related to host species were obtained using the NCBI taxonomic identification number. High-

quality microbial genomes were selected from ProGenomes2 database.43 The resulting 63,410 publicly available metagenomes

and 87,920 high-quality microbial genomes are listed in Table S1.

Reads trimming and assembly
Reads were processed using NGLess,96 trimming positions with quality lower than 25 and discarding reads shorter than 60 bp post-

trimming. Metagenomes obtained from a host-associated microbiome passed through a filtering of reads mapping to the host

genome when available. Reads totaling more than 14.7 trillion base pairs of sequenced DNA were assembled with MEGAHIT

1.2.9112 and the taxonomy of the 16,969,685,977 contigs generated was inferred as previously described,131 using MMSeqs299

to map the sequences against the GTDB release 95.68,69 Mapped taxonomy lineages were then manually curated to conform to

the International Code of Nomenclature of Prokaryotes.132,133

smORF and AMP prediction
Analogously to Sberro et al.,38 we used a modified version of Prodigal34 to predict smORFs (33–303 bp) from contigs. The

4,599,187,424 redundant smORFs, most of which (99.25%) originated in metagenomes, were then de-duplicated to optimize the

computational resource usage, yielding 2,724,621,233 non-redundant smORFs. Macrel42 was run on the de-duplicated smORFs

to predict c_AMPs. Singleton sequences (those appearing in a single sample or genome) were eliminated, except when they had

a significant match (amino acid identityR75%and E-value%10�5) to a sequence from the Data Repository of Antimicrobial Peptides

(DRAMP)46 version 3.0 using the ‘easy-search’ method from MMSeqs2.99 In total, AMPSphere encompassed 863,498 non-redun-

dant predicted c_AMPs encoded by 5,518,294 redundant genes. AMP densities were estimated as the number of AMPs per assem-

bled base pairs in a sample or a species.

AMP genes originating from ProGenomes243 had the taxonomy of the original genome assigned to them, whereas AMP genes

from metagenomes were assigned the taxonomy predicted for the contig where they were found. Insights about potential structural

conformations were obtained using the function secondary_structure_fraction from the ProtParam module implemented in the

SeqUtils in Biopython.107 This function calculates the fraction of amino acids tend to assume conformations of helix [VIYFWL],

turn [NPGS], and sheet [EMAL].

Clustering of AMP families
Clustering peptides by sequence identity is only possible at high identities as short low-/medium-identity matches are possible by

chance. Therefore, aiming to recover matches where basic features are preserved even if individual amino acids are not iden-

tical,134,135 we used a reduced amino acids alphabet of 8 letters58 - [LVIMC], [AG], [ST], [FYW], [EDNQ], [KR], [P], [H]. c_AMPs

were hierarchically clustered after alphabet reduction using three sequential identity cutoffs (100%, 85%, and 75%) with CD-Hit.98
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A cluster was considered an AMP family when it consisted of at least 8 sequences.38 Representative sequences of peptide clusters

were selected according to their length (taking the longest) with ties being broken by their alphabetical order.

To validate this clustering procedure, we used a sample of 3,000 sequences randomly sampled from AMPSphere, excluding clus-

ter representatives. These sequences were aligned against the representative sequence of their cluster using the Smith-Waterman

algorithm136 with the BLOSUM 62 cost matrix, and gap open and extension penalties of �10 and �0.5, respectively. The alignment

score was then converted to an E-value according to themodel by Karlin and Altschul,137 which uses the values of k (0.132539) and l

(0.313667) constants adjusted to search for a short input sequence as implemented in the BLAST algorithm.120,138 Alignments were

considered significant if their E-value was less than 10�5. We found that more than 95.3% of alignments produced in the first two

levels (100% and R85% of identity) were significant, along with 77.1% of those from the third level (R75% of identity) – see

Figure S3.

Quality control of c_AMPs
The c_AMPs in AMPSphere were submitted to another six AMP prediction systems (AMPScanner v2,53 ampir40 - with the model for

mature peptides, amPEPpy,54 APIN55 – with their proposed model, AI4AMP,56 and AMPLify57).

The genes of c_AMPs were subjected to five different quality tests to reduce the likelihood that the observed peptides were arti-

facts or fragments of larger proteins. Initially, the peptides were searched against AntiFam v.7.0123 using HMMSearch,109 which was

designed to identify commonly recurring spuriously predicted ORFs, with the option ‘‘–cut_ga’’. Fewer than 0.05% of c_AMPs had

any significant hits.

For each smORF, we searched for an in-frame stop codon upstream of its start codon. When no stop codon is found, we cannot

rule out the possibility that the smORF is part of a larger genewhich we cannot observe due to fragmented assembly. Most (68.4%) of

the c_AMPs are encoded by at least one gene that is not terminally placed. However, the fact that a c_AMP is terminal does not imply

that the given c_AMP is an artifact since the AMP genes are short enough to be recovered even in short contigs. For example, 72.9%

(4,622/6,339) of homologs to DRAMP46 version 3.0 were found as terminal c_AMPs in AMPSphere.

The RNAcode88 program predicts protein-coding regions based on evolutionary signatures typical for protein genes. This analysis

depends on a set of homologous and non-identical genes. Therefore, AMP clusters containing at least three gene variants were

aligned. Given that an extensive portion of the AMPSphere candidates (53%; 459,910 out of 863,498) is not part of such a cluster,

they could not be tested. Of the tested c_AMPs, 53% (215,421 out of 403,588) were considered genes with evolutionary traits of pro-

tein-coding sequences.

We then checked for evidence of transcription and/or translation using 221 publicly available metatranscriptomes, comprising hu-

man gut (142), peat (48), plant (13), and symbionts (17); and 109 publicly available metaproteomes from PRIDE129 database

comprising from 37 habitats - Table S6. Using bwa v.0.7.17,113 reads from themetatranscriptomesweremapped against non-redun-

dant AMP genes, and, using NGLess,96 we selected genes with at least one read mapped across a minimum of two samples to in-

crease our confidence. This approach is similar to that adopted when predicting AMPs.42 Using regular expressions implemented in

Python 3.8,100 k-mers of all AMPSphere peptides (with length equal to at least half the length of the sequence) were compared to

peptide sequences in metaproteomics data. A perfect match between a k-mer and a metaproteomic peptide was considered addi-

tional evidence that this c_AMP is likely to be translated, as described by Ma et al.6 Briefly, the number of c_AMP peptides mapped

against the set of metaproteomic samples was counted, and those c_AMP peptides with at least onematch coveringmore than 50%

of the peptide were marked as detected. c_AMPs with experimental evidence in metatranscriptomes and/or metaproteomes ac-

counted for circa 20% of the AMPSphere.

The mapping of c_AMPs was performed without considering genomic context, which may have led to an overestimation of can-

didates being identified as potentially transcribed. For example, if they are homologous to longer proteins the presence of the longer

gene may lead to a false positive detection of the shorter c_AMP. We investigated this using Fisher’s Exact Test to compare the

percentage of AMP homologs to the GMGCv152 database with experimental evidence of translation (3.4% - 2,073 out of 61,020

peptides, Odds Ratio = 4.3, PFisher’s exact < 10�300) and/or transcription (22.8% - 13,901 out of 61,020 peptides, Odds Ratio = 1.2,

PFisher’s exact = 6.7 $ 10�108). The results suggest that our approach tends to slightly overestimate the potential transcription and trans-

lation of candidates with canonical-length homologs.

Given that only a small number of transcriptomic or proteomics dataset were available and the afore-mentioned limitations in in-

terpreting the mappings, we considered AMPs passing all quality-control tests to be high-quality, regardless of evidence of trans-

lation or transcription. We further separated those with experimental evidence of translation/transcription (17,115 c_AMPs, circa

2% of AMPSphere) and those without it (63,098 c_AMPs, circa 7%). For c_AMP families, we considered high-quality those where

R75% of its c_AMPs pass all quality control tests or those with at least one c_AMP possessing experimental evidence of transla-

tion/transcription.

Sample-based c_AMPs accumulation curves
To determine the saturation of c_AMP discovery, for each habitat or group of habitats, we computed sample-based accumulation

curves by randomly sampling metagenomes in steps of 10 metagenomes. This procedure was repeated 32 times, and the average

was taken.
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Multi-habitat and rare c_AMPs
We first counted c_AMPs present in R2 habitats (‘‘multi-habitat AMPs’’). To then test the significance of this value, we opted for a

similar approach to that described in Coelho et al.52: habitat labels for each sample were shuffled 100 times and the number of re-

sulting multi-habitat c_AMPs was counted. Shuffling labels resulted in 676,489.7 ± 4,281.8 multi-habitat c_AMPs by chance for high-

level habitat groups, and in 685,477.17 ± 4,369.6 multi-habitat c_AMPs by chance when looking at the habitats individually inside the

high-level groups. The Shapiro-Wilks test was used to check that the resulting data distribution is normal (p = 0.49, for specific hab-

itats; p = 0.1 for high-level habitats). In the original (non-shuffled data), high-level habitat groups presented 93,280 multi-habitat

c_AMPs (136.21 standard deviations below shuffled value), while specific habitats presented 173,955 multi-habitat c_AMPs

(117.1 standard deviations below shuffled value).

To determine the rarity of c_AMPs, we adapted the protocol previously established by Coelho et al.52 in which the non-redundant

genes in AMPSphere were mapped against the reads of metagenome samples using NGLess.96 We considered only uniquely map-

ped reads. From themapping, we computed the c_AMPs detected per sample and the number of detections per c_AMP, considering

‘‘rare’’ c_AMPs as those detected less than the average of the entire AMPSphere (682 detections or 1% of all samples as previously

described for species139). This approach was adopted to overcome the high computational costs of a competitive mapping proced-

ure. We expect that our approach overestimates how prevalent c_AMPs are, and because of that, it is a robust way to estimate the

rarity of c_AMPs.

As the high-quality designation requires at least 3 gene variants for the RNAcode test to be performed, the rarest genes will not be

high-quality. However, for robustness, we quantified this effect by computing the mean and median number of detections in only the

high-quality c_AMPs and only non-terminal c_AMPs (a test which does not require a minimum number of genes). The mean number

of detections is 682 for the full collection, 789 for high-quality c_AMPs, and 679 for non-terminal ones.

Testing c_AMPs overlap across habitats
Like was done when testing the significance of the number of multi-habitat c_AMPs observed, the number of overlapping c_AMPs

was computed for each pair of habitats. We shuffled the sample labels 1,000 times, counting the number of randomly overlapping

c_AMPs for each pair of habitats. Then, we estimated the probability of observing the overlap by Chebyshev’s inequality, which does

not rely on any assumption regarding the distribution of the data as we observed, using the Shapiro-Wilk’s test, that the shuffled

counts do not follow a normal distribution. Chebyshev’s inequality is p% 1
Z2, where Z stands for the Z score computed from the

average and standard deviations estimated by the shuffling procedure. The p-values were adjusted using Holm-Sidak implemented

in multipletests from the statsmodels package,114 and those below 0.05 were considered significant.

c_AMP density in microbial species

The c_AMP density was defined as rAMP =
ncAMPs

L , where ncAMPs
is the number of c_AMP redundant genes and L is the assembled base

pairs. We assume, as an approximation, that in a large segment assembled, the start positions of AMP genes are independent and

uniformly random. Then, we calculated the standard sample proportion error with the formula: STDerr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�ð1� rÞ

L

q
. The standard

sample proportion error was used to calculate the margin of error at a 95% confidence interval (Z = 1:96;a = 0:05).

To gain insights about the contributions of different phyla, species, and genera to the AMPSphere, we calculated the c_AMP den-

sity for these taxonomy levels using the c_AMPs includedwithin AMPSphere, summing all assembled base pairs for contigs assigned

to each taxonomy level in the samples used in AMPSphere. The rAMP of genera, phyla and species within a margin of error superior to

10% of the calculated value were eliminated along with outliers according to Tukey’s fences (k = 1:5). We estimated species’ pres-

ence and abundance in each sample using mOTUs2.115 None of the genera with the highest rAMP (Algorimicrobium, TMED78,

SFJ001, STGJ01, and CAG-462) were highly prevalent microbes.

c_AMPs and bacterial species transmissibility
We used the species taxonomy and transmissibility indices calculated by Valles-Colomer et al.72 to demonstrate the effect of AMPs

on the transmission of bacterial species frommother to children. Only those species overlapping AMPSphere and the datasets from

Valles-Colomer et al.72 were used for this analysis, and their AMP densities were calculated as described in the previous section

(c_AMP density in microbial species), using all the predicted c_AMPs from metagenomes and genomes we obtained, also including

those not in AMPSphere, to avoid sampling bias. The AMPdensity and the coefficient of transmissibility were correlated using Spear-

man’smethod implemented in the scipy package104: following children’smicrobiome after 1, 3, and up to 18 years, as well as, cohab-

itation and intra-datasets. The p-values of correlations were corrected using Holm-Sidak implemented in the multipletests function

from the statsmodels package.114

Determination of accessory AMPs
To uncover the prevalence of c_AMPs through the microbial pangenomes, core, shell, and accessory c_AMP clusters were deter-

mined using the subset of c_AMPs obtained from ProGenomes243 because of their high-confidence assigned taxonomies and ge-

nomically-defined species (specI140). To increase confidence in our measures, only species containing at least 10 genomes were
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used in this analysis. c_AMPs and AMP families present in fewer than 50% of the genomes from a microbial species were classified

as accessory. c_AMPs and families present in 50%–95% of the genomes in the cluster were classified as shell,141 and those present

in >95% of the genomes were classified as core genes.66

To determine the propensity of AMPs being shared between genomes belonging to the same strain, we first defined strains within

species. For this, we used FastANI v.1.33111 to cluster genomes from the same species in ProGenomes2.43 Genome groups with ANI

R99.99%were considered clonal complexes and only a single representative of each clonal complex was kept for further analyses.

Species that had fewer than 10 genomes after this step were not considered further in this analysis. Next, we inferred strains (99.5%

% ANI <99.99%) as in Rodriguez et al.142 We then counted the pairs of genomes from the same species sharing AMPs, stratified by

whether the pair originates from the same strain or not, and tested the results with Fisher’s Exact Test implemented in the scipy

package.104

To determine the proportions of accessory, shell and core full-length proteins in the microbial pangenomes, we also extracted the

predicted full-length proteins from the ENA database for each genome and hierarchically clustered them after alphabet reduction in a

similar fashion to that described in the topic ‘‘AMP families’’. Full-length protein clusters with R8 sequences for each species were

kept. The prevalence of full-length protein families within a species was computed as above and the number of core families was

compared to the number of c_AMP core families using the probability, calculated as number of species with proportion of core

full-length protein families less or equal to that observed for c_AMPs divided by the total of assessed species.

To determine the genotype ofMycoplasma pneumoniae genomes in ProGenomes2,43 we extracted the gene coding for P1 adhe-

sin70 by mapping the reference gene sequence NZ_LR214945.1:c568695-567307 against each genome with bwa v.0.7.17113, and

later extracted the sequences using with SAMtools116 and BEDtools.117 The extracted gene sequences were aligned using Clustal

Omega,118 and a phylogenetic tree was built using the aligned nucleotide sequences and FastTree 2110 with the restricted time-

reversible substitution model and a bootstrapping procedure with 1,000 pseudo-replicates to determine node support. The tree

was used to segregate and classify genomes taking the strain type of reference genomes from Diaz et al.71

Annotation of AMPs using different datasets
To detect homologs to previously published proteins, we aligned AMPSphere candidates against several databases: (i) the small pro-

tein sets in SmProt 2,49 (ii) the bioactive peptides database starPepDB 45k,51 (iii) the small proteins from the global data-driven

census of Salmonella,50 (iv) the global microbial gene catalog GMGCv1,52 (v) and the AMP database DRAMP46 version 3.0. To strictly

avoid any artifacts of assembly for the analysis, only c_AMPs which passed the terminal placement test (i.e., for which there was

strong evidence that the ORF is indeed complete) were searched against the GMGCv1.52 The AMPs were annotated using

MMseqs299 with the ‘easy-search’ method, retaining hits with an E-value up to 10�5. As Macrel42 removes the starting methionine

from the peptides it outputs, hits starting at the second amino acid were treated as if they matched the first one.

We used the hypergeometric test implemented in the scipy package104 to model the association between c_AMPs and the back-

ground distribution of ortholog groups from GMGCv1.52 The number of genes that were redundant in GMGCv152 for each ortholog

group was computed along with the counts for ortholog groups in the top hits to AMPSphere. The enrichment was given as the pro-

portion of hits present in a given ortholog group divided by the proportion of that ortholog group among the redundant sequences in

GMGCv1,52 and results were considered significant if p < 0.05 after correction with the Holm-Sidak method implemented in multi-

pletests from the statsmodels package.114 When using a robust approach that filters the ortholog groups by the number of c_AMP

hits and GMGCv152 hits associated with them, using aminimum of 10, 20, or even 100 proteins, the results were kept similar to those

obtained with all data showing that the extension of the ortholog groups in AMPSphere did not affect the enrichment analysis.

To check for genomic entities generated after gene truncation, we screened for c_AMP homologs using the default settings for

Blastn120 against the NCBI database,124 keeping only significant hits with a maximum E-value of 10�5. As a case study, we selected

the AMP10.271_016, predicted to be produced by Prevotella jejuni, which shares the start codon with the gene coding for a NAD(P)-

dependent dehydrogenase (WP_089365220.1). To verify the gene disposition and putative mutations leading to the AMP creation,

we used Biopython107 to codon-align the fragments from metagenomic contigs assembled from samples SAMN09837386,

SAMN09837387, and SAMN09837388, and genomic fragments of different strains of Prevotella jejuni CD3:33 (CP023864.1:

504836–504949), F0106 (CP072366.1:781389–781502), F0697 (CP072364.1:1466323–1466436), and from Prevotella melaninogen-

ica strains FDAARGOS_760 (CP054010.1:157726–157839), FDAARGOS_306 (CP022041.2:943522–943635), FDAARGOS_1566

(CP085943.1:1102942–1103055), and ATCC 25845 (CP002123.1:409656–409769) and compared the segments coding for the

AMP and the original full-length protein.

Genomic context conservation analysis
To gain insights into the gene synteny involving AMP genes, wemapped the 863,498 AMP sequences against a collection of 169,632

reference genomes, metagenome-assembled genomes (MAGs) and single amplified genomes (SAGs) curated elsewhere61 with

DIAMOND119 in ‘‘blastp’’ mode, as previously reported.61 Hits with identity >50% (amino acid) and query and target coverage

>90% were considered significant. The target coverage threshold avoids hits to larger homologs whose function may be unrelated.

This yielded 107,308 AMPs with homologs in at least one genome. We built gene families from the hits of each AMP detected in the

prokaryotic genomes and calculated a conservation score based on the functional annotation of the neighboring genes in a window

of three genes up and downstream. The vertical conservation score at each position within the window of each c_AMP was
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calculated as the number of genes with a given functional annotation (ortholog group, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway, KEGG orthology, KEGGmodule,126 PFAM 33.1,122,143 and CARD125; details of annotation and annotated database

described previously61). divided by the number of genes in the family. AMPswithmore than two hits and a vertical conservation score

>0.9 with any functional term were considered to have conserved genomic contexts. Figure 4 shows genomic context conservation

of different KEGG pathways.

For testing whether the fraction of AMPs with conserved genomic neighbors is similar to that of other gene families within the

169,632 genomes curated by del Rı́o et al.,61 we calculated genomic context conservation on 3,899,674 gene families calculated

de novo with MMSeqs299 (using a minimal amino acid identity of 30%, coverage of the shorter sequence of at least 50%, and

maximum E-value of 10�3). The c_AMPs were also annotated using EggNOG-mapper v2.108 Their KO annotations were compared

to that of the immediate neighbors (+/� 1 positions) to identify neighborhoods with the same function. It was possible to annotate

56.1% (60,173 out of 107,308) of c_AMPs with hits to the genomes tested using the EggNOG5 database.60 Of these, 18.1% were

assigned to translation-related functions (class J), 14.4% belong to proteins of unknown function (S), 9% were assigned to replica-

tion, recombination, and repair (L).

AMPSphere web resource
AMPSphere is found at the address https://ampsphere.big-data-biology.org/. The implementation is based on Python100 and Vue

Javascript. The database was built with sqlite, and SQLalchemy was used to map the database to Python objects. Internal and

external APIs were built using FastAPI and Gunicorn to serve them. On the front end, Vue 3 was used as the backbone and Quasar

built the layout. Plotly was used to generate interactive visualization plots, and Axios to render content seamlessly. LogoJS (https://

logojs.wenglab.org/app/) was used to generate sequence logos for AMP families; while the helical wheel app (https://github.com/

clemlab/helicalwheel) was used to generate AMP helical wheels.

Peptide selection for synthesis and testing
We selected two groups of peptides: (i) 50 peptides that were selected as being particularly likely to be active and that were otherwise

interesting (as described below), (ii) 50 peptides selected randomly after applying technical exclusions.

For the first group, only high-quality (see the topic ‘‘quality control of c_AMPs’’) c_AMPs were considered for synthesis. They were

further filtered according to six criteria for solubility144 and three criteria for synthesis, as in PepFun.145 We estimated the solubility

using the criteria implemented in PepFun,145 observing that 67.4% (581,749 peptides) passed at least half of the solubility criteria

evaluated. The subset that is homologous to peptides in DRAMP46 version 3.0 had a slightly lower rate, 44.3% passed half the tests.

We then assessed the peptides regarding their ease of synthesis, however, only 21.2% from AMPSphere passed at least 2 out of the

3 criteria established for chemical synthesis.

A peptide approved for at least six of the above-mentioned criteria was then filtered by predicting AMP activity with six methods in

addition to Macrel42: AMPScanner v2,53 the mature peptides model in ampir,40 amPEPpy,54 APIN55 – with their proposed model,

AI4AMP,56 and AMPLify.57 Peptides predicted to be AMPs by all methods were filtered by length, discarding sequences longer

than 40 amino acid residues, for which conventional solid-phase peptide synthesis using Fmoc strategy has lower yields and

many recoupling reactions.146–148 Only one peptide was kept from each family or cluster, namely the one with the highest number

of observed smORFs. After this process, we obtained 364 candidate AMPs, belonging to 166 families and 198 clusters with <8

c_AMPs. Of these, 30 candidates were homologous to sequences from the databases used in annotation (e.g., SmProt 249). To

compose the list of 50 high-likelihood candidates: (i) we selected 34 of the most prevalent peptides; (ii) we randomly selected 14

c_AMPs (30% of our set) with homologs to the GMGCv152 and one that matched SmProt 249; and (iii) we included one peptide

that was found in the MAGs binned from stool samples used to investigate fecal transplantations.149 We also included scrambled

sequences made using five of the most active peptide sequences to verify the potency of randomly generated sequences.

To build the group of randomly selected peptides, we first selected c_AMPs that are not homologous to any other databases tested

and that passed the abovementioned synthesis criteria (total of 768,061 out of 863,498 peptides). We further divided this group into

subgroups: (i) those with Macrel-assigned probability >0.6 (271,555 c_AMPs) and (ii) those in the range 0.5–0.6 (496,506 c_AMPs;

note that all c_AMPs in AMPSphere have a Macrel-assigned probabilityR0.5). We randomly sampled 25 peptides from each group.

Minimal inhibitory concentration (MIC) determination
The 100 AMPswere tested for antimicrobial activity using the brothmicrodilutionmethod.150MIC valueswere considered as the con-

centration of the peptides that killed 100% of cells after 24 h of incubation at 37�C. First, peptides diluted in water were added to

untreated flat-bottom polystyrene microtiter 96-well plates in 2-fold dilutions ranging from 64 to 1 mmol L�1, and then peptides

were exposed to an inoculum of 2$106 cells in LB or BHI broth, for pathogens and gut commensals, respectively. After the incubation

time, the absorbance of each well representing each of the conditions was analyzed using a spectrophotometer at 600 nm. The as-

says were conducted in three biological replicates to ensure statistical reliability.

Circular dichroism assays
Circular dichroism experiments were conducted using a J1500 circular dichroism spectropolarimeter (Jasco) at the Biological Chem-

istry Resource Center (BCRC) of the University of Pennsylvania. The experiments were carried out at a temperature of 25�C. Circular
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dichroism spectra were obtained by averaging three accumulations using a quartz cuvette with an optical path length of 1.0 mm. The

spectra were recorded in thewavelength range from 260 to 190 nm at a scanning rate of 50 nmmin�1 with a bandwidth of 0.5 nm. The

peptides were tested at a concentration of 50 mmol L�1. Measurements were performed in water, a mixture of water and trifluoroe-

thanol (TFE) in a ratio of 3:2, and amixture of water andmethanol in a ratio of 1:1. Baselinemeasurementswere recorded prior to each

measurement. To minimize background effects, a Fourier transform filter was applied. The helical fraction values were calculated

using the single spectra analysis tool available on the BeStSel server.75

Outer membrane permeabilization assays
Membrane permeability was analyzed using the 1-(N-phenylamino)naphthalene (NPN) uptake assay. NPN demonstrates weak fluo-

rescence in an extracellular environment but displays strong fluorescence when in contact with lipids from the bacterial outer mem-

brane. Thus, NPN will show increased fluorescence when the integrity of the outer membrane is compromised. A. baumannii ATCC

19606 and P. aeruginosa PA01 were cultured until cell numbers reached an OD600 of 0.4, followed by centrifugation (10,000 rpm at

4�C for 3 min), washing, and resuspension in buffer (5 mmol L�1 HEPES, 5 mmol L�1 glucose, pH 7.4). Subsequently, 4 mL of NPN

solution (working concentration of 0.5 mmol L�1) was added to 100 mL of bacterial solution in a white flat bottom 96-well plate. The

fluorescence was monitored at lex = 350 nm and lem = 420 nm. The peptide solutions in water (100 mL solution at their MIC values)

were introduced into each well, and fluorescence was monitored as a function of time until no further increase in fluorescence was

observed (30 min). The relative fluorescence was calculated using a non-linear fit. The positive control (antibiotic polymyxin B) was

used as baseline. The following equation was applied to reflect % of difference between the baseline (polymyxin B) and the sample:

Relative fluorescence =
1003

�
fluorescencesample � fluorescencepolymyxinB

�
fluorescencepolymyxinB

Cytoplasmic membrane depolarization assays
The ability of the peptides to depolarize the cytoplasmic membrane was assessed by measuring the fluorescence of the membrane

potential-sensitive dye 3,30-dipropylthiadicarbocyanine iodide [DiSC3-(5)]. This potentiometric fluorophore fluoresces upon release

from the interior of the cytoplasmic membrane in response to an imbalance of its transmembrane potential. A. baumannii ATCC

19606 and P. aeruginosa PA01 cells were grown with agitation at 37�C until they reached mid-log phase (OD600 = 0.5). The cells

were then centrifuged and washed twice with washing buffer (20 mmol L�1 glucose, 5 mmol L�1 HEPES, pH 7.2) and re-suspended

to an OD600 of 0.05 in 20 mmol L�1 glucose, 5 mmol L�1 HEPES, 0.1 mol L�1 KCl, pH 7.2. An aliquot of 100 mL of bacterial cells was

added to a black flat bottom 96-well plate and incubated with 20 nmol L�1 of DiSC3-(5) for 15 min until the fluorescence stabilized,

indicating the incorporation of the dye into the cytoplasmic membrane. The membrane depolarization was monitored by observing

the change in the fluorescence emission intensity of the dye (lex = 622 nm, lem = 670 nm), after the addition of the peptides (100 mL

solution at their MIC values). The relative fluorescence was calculated using a non-linear fit. The positive control (antibiotic polymyxin

B) was used as baseline. We estimated the%of difference between the baseline (polymyxin B) and the sample using the samemath-

ematical approach as in the ‘‘Outer membrane permeabilization assays’’.

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs for the experimental results were created and statistical tests conducted in GraphPadPrism v.9.5.1 (GraphPadSoftware, San

Diego, California USA).

ADDITIONAL RESOURCES

AMPSphere is freely available for download in Zenodo151 and as a web server (https://ampsphere.big-data-biology.org/).
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Supplemental figures

Figure S1. General physical-chemical features of c_AMPs in AMPSphere and validated databases of antimicrobial peptides, related to

Figure 1

Shown are density curves; the arbitrary density units are not shown, as all curves are independently normalized so the area under the curve is one. For each

dataset and feature, the top 1% and bottom 1% of values were considered outliers and are not shown in the plot. Proportions of residues with small side chains

[A, C, D, G, N, P, S, T, V] per c_AMP along with the proportions of basic residues [H, R, K] per c_AMP were also shown. The distributions of each feature were

compared among the datasets using the Mann-Whitney test with multiple hypothesis testing corrected using Holm-Sidak. Almost all differences are significant

(adjusted p value < 0.05). The exceptions are: aliphatic index did not differ between the peptides from DRAMP version 346 and the ones present in the positive

training set used in Macrel42 (pMann = 0.71); AMPSphere peptides did not differ from the positive training set used in Macrel42 in the fraction of aromatic (pMann =

0.58), non-polar (pMann = 0.97), polar (pMann = 0.97), and acidic (pMann = 0.69) residues; the instability index (pMann = 0.58) and the hydrophobicity (pMann = 0.31) of

AMPSphere peptides also were not different from the positive training set used in Macrel.42

ll
OPEN ACCESSResource



Figure S2. c_AMP quality and habitat distribution, related to Figures 1 and 2

(A) Quality assessment of AMPSphere revealedmost of the peptides passed at least one of the tests. The RNAcode test depends on gene diversity, which is very

low for AMPSphere, which led to a low rate of positives among our candidates.

(B) c_AMPs homologous to databases of validated bioactive peptides also showed a higher average quality of these datasets.

(C) The limited overlap of c_AMPs among habitats argues in favor of using habitat groups to gain resolution. Note that the group of habitats with the highest paired

overlaps belongs to human body sites and samples from human guts and non-human mammalian guts. Only habitats with at least 100 samples were shown.

(D) We observed a large proportion of rare genes in AMPSphere from different habitat groups.
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Figure S3. Clustering validation of families, related to STAR Methods section ‘‘Clustering of AMP families’’

To validate the clustering procedure using a reduced amino acid alphabet, samples of 1,000 peptides were randomly drawn from AMPSphere (excluding

representative sequences) and aligned against their cluster representatives. Three different levels (I, II, and III) of clustering were tested. The E-values were

computed per alignment and plotted against the corresponding alignment identity. The averaged proportion of significant alignments is shown in each

graph above.
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Figure S4. Antimicrobial activity of polymyxin B and levofloxacin and circular dichroism spectra of the c_AMPs, related to STAR Methods

section ‘‘Circular dichroism assays’’

(A) Minimal inhibitory concentration values for polymyxin B, a peptide antibiotic, and levofloxacin against all the strains tested. Polymyxin B and levofloxacin were

used as positive controls in all antimicrobial assays.

(B–D) The c_AMPs’ secondary structural tendency was analyzed using three different solvents: (B) water, (C) trifluoroethanol (TFE) and water mixture (3:2, V:V),

and (D) methanol (MeOH) and water mixture (1:1, V:V). The experiments were carried out at 25�C, and the circular dichroism spectra shown are an average of

three accumulations obtained using a quartz cuvette with an optical path length of 1.0 mm, ranging from 260 to 190 nm at a rate of 50 nmmin�1 and a bandwidth

of 0.5 nm. All peptides were tested at a concentration of 50 mmol L�1, with respective baselines recorded prior to measurement. A Fourier transform filter was

applied to minimize background effects.
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(legend on next page)
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Figure S5. Antimicrobial activity and secondary structure of scrambled versions of some of the lead c_AMPs, related to Figures 6 and 7

(A) MIC values of the scrambled versions of five of the lead c_AMPs from AMPSphere tested against the same 11 pathogenic strains and eight gut commensal

strains used to assess the activity of the c_AMPs.

(B–D) The scrambled peptides’ secondary structural tendency was analyzed using three different solvents: (B) water, (C) TFE and water mixture (3:2, V:V), and (D)

MeOH and water mixture (1:1, V:V). The experiments were carried out in the same conditions as the ones used for the c_AMPs. A Fourier transform filter was

applied to minimize background effects.

(E) Heatmap with the percentage of secondary structure found for each peptide in three different solvents: water, 60% TFE in water, and 50% MeOH in water.

Secondary structure was calculated using BeStSel server.75
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Figure S6. Mechanism of action of AMPSphere peptides and anti-infective activity of c_AMPs in a preclinical animal model, related to

Figures 6 and 7
(A) Fluorescence values relative to polymyxin B (PMB, positive control) of the fluorescent probe 1-(N-phenylamino)naphthalene (NPN) that indicate outer

membrane permeabilization of P. aeruginosa PAO1 cells.

(B) Fluorescence values relative to PMB (positive control) of 3,30-dipropylthiadicarbocyanine iodide (DiSC3-[5]), a hydrophobic fluorescent probe used to indicate

cytoplasmic membrane depolarization of P. aeruginosa PAO1 cells.

(C) Bacterial counts four days post-infection; the c_AMPs were tested at their MIC in a single dose 1 h after the establishment of the infection. Each group

consisted of three mice (n = 3), and the bacterial loads used to infect each mouse were derived from a different inoculum.

(D) Mouse weight throughout the experiment (mean ± the standard deviation).

Statistical significance in (C) was determined using one-way ANOVAwhere all groupswere compared to the untreated control group; p values are shown for each

of the groups. Features on the violin plots represent median and upper and lower quartiles. Figure created in BioRender.com.
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