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Abstract 

Metagenomic sequencing enables the in-depth study of microbes and their functions in humans, animals, and the environment. While se- 
quencing data is deposited in public databases, the associated contextual data is often not complete and needs to be retrie v ed from primary 
publications. This lack of access to sample-level met adat a like clinical data or in situ observations impedes cross-study comparisons and meta- 
analy ses. We theref ore created the Met alog dat abase, a repository of manually curated met adat a for met agenomics samples across the globe. 
It contains 80 423 samples from humans (including 66 527 of the gut microbiome), 10 744 animal samples, 5547 ocean water samples, and 
23 455 samples from other environmental habitats such as soil, sediment, or fresh water. Samples have been consistently annotated for a 
set of habitat-specific core features, such as demographics, disease status, and medication for humans; host species and captivity status for 
animals; and filter sizes and salinity for marine samples. Additionally, all original met adat a is provided in tabular form, simplifying focused studies 
e.g. into nutrient concentrations. P re-computed tax onomic profiles f acilit ate rapid dat a exploration, while links to the SPIRE database enable 
genome-based analyses. The database is freely available for browsing and download at https://met alog .embl.de/. 
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Introduction 

Metagenomic sequencing has transformed research in micro-
biology [ 1 –3 ]. It has made it possible to elucidate the taxo-
nomic profiles and functional potential of microbial commu-
nities across the globe [ 4 , 5 ] and has driven numerous dis-
coveries, e.g. in tracing the microbiome changes upon disease
development and drug treatment in type 2 diabetes [ 6 , 7 ].
Metagenomic sequencing data is useful beyond the scope of
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the original studies for which it is generated: it can be repur- 
posed in the context of meta-studies, to extract metagenome- 
assembled genomes [ 8 –10 ], to create gene catalogs [ 11 ], to 

identify disease-associated species across cohorts [ 12 ], and for 
countless other applications. Combining data across studies 
increases statistical power and yields more robust findings by 
covering more diverse populations. However, there are com- 
plex interactions between the microbiome and its environment 
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Table 1. Non-e xhaustiv e o v ervie w of met adat a dat abases 

Name Last update Number of samples Manual annotation Focus 

Amplicon data only 
Murine Microbiome Database [ 26 ] 2021 762 yes Mice 
Animal Microbiome Database [ 27 ] 2021 2530 yes Animals 
Human Microbiome Compendium [ 28 ] 2025 168 000 no Human 
Mixed 
mBodyMap [ 29 ] 2021 63 148 yes Human 
GMrepo [ 30 ] 2021 71 642 yes Human 
MicrobeAtlas [ 31 ] 2025 2 056 412 no All habitats 
Metagenomic data only 
AncientMetagenomeDir [ 32 ] 2025 2385 yes Ancient samples 
MarineMetagenomeDB [ 33 ] 2021 11 449 no Marine 
Meta2DB [ 34 ] 2024 13 897 yes Human 
TerrestrialMetagenomeDB [ 35 ] 2021 20 206 no Terrestrial 
curatedMetagenomicData [ 36 ] 2022 22 588 yes Human 
HumanMetagenomeDB [ 37 ] 2020 69 822 no Human 
Metalog (this study) 2025 120 169 yes All habitats 
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hat can confound associations [ 13 ]. It is therefore crucial for
nalyses to take these factors into account. Unfortunately, the
ecessary contextual data is often not readily available, is dis-
ributed over a variety of sources, and often follows heteroge-
eous annotation standards that need to be harmonized across
tudies [ 14 , 15 ]. 

Most metagenomic sequencing data is deposited in
atabases that are part of the International Nucleotide Se-
uence Database Collaboration (INSDC) between the Euro-
ean Bioinformatics Institute (EMBL-EBI), the National Cen-
er for Biotechnology Information (NCBI), and the National
nstitute of Genetics (NGI): the European Nucleotide Archive
ENA), the Sequence Read Archive (SRA), and the DNA Data
ank of Japan (DDBJ) [ 16 –19 ]. In the past, authors also used
nalysis services like MG-RAST to share data [ 20 ]. National
epositories like the Chinese Genome Sequence Archive (GSA)
re also increasing in size [ 21 ]. These repositories organize
ata into a hierarchy of data types: projects, biological sam-
les, experiments, and runs. A biosample accession should
niquely identify a biological sample, like an aliquot of a fe-
al sample or material collected from a certain size fraction of
eawater. From such a sample, multiple readouts may be ex-
erimentally prepared e.g. by DNA or RNA extraction. These
re then sequenced in one or more runs of a sequencer. Se-
uencing databases require basic metadata on the experimen-
al process, for example, by specifying the kind of library se-
ection strategy (e.g. whole-genome versus amplicon), but not
ther important details such as the DNA extraction kits used.
At the sample level, further annotation standards are

vailable, starting with the Minimum Information About a
etagenome or Environmental Sequence (MIMS) [ 22 ]. Ide-

lly, complete metadata is directly available and linked to the
etagenomic samples via the EMBL-EBI BioSamples [ 23 ] or

he NCBI BioSample database [ 24 ]. More often, metadata
eeds to be extracted from a paper’s text, figures, supplemen-
ary tables, or data repositories such as FigShare or Zenodo,
nd then linked to the deposited sequencing data. While a min-
mum set of metadata such as MIMS is required, sequencing
epositories cannot perform further quality control on the up-
oaded data—for example, checking whether there is a match
etween the stated geographic location and the given coordi-
ates. This results in the retention of erroneous annotations,
uch as switches between latitude and longitude and between
ongitudes east and west of the meridian (e.g. a sample from
Italy may be shown as being located in the Atlantic Ocean).
Other errors only become apparent when the metadata is care-
fully cross-checked, such as mismatches between the location
reported in the paper and the individual samples. Both in coor-
dinates and in other metadata columns, we observed the con-
sequences of an inadvertent application of Microsoft Excel’s
convenience feature to automatically increment values when
filling columns from a starting value, where the authors likely
intended to replicate the same value but unintentionally in-
troduced “drag-down” errors. Lastly, even if metadata is cor-
rectly deposited for one study, there still is a need for harmo-
nization of variable labels and their contents to allow for inte-
gration across studies. For example, the type of birth has been
given in fields such as “delivery_mode” or “delivery,” with a
number of synonyms for Caesarean section like “C-section,”
“Caesarean,” and various misspellings of the word. 

For the purpose of this paper, “metadata” refers to the con-
textual data concerning a biological sample, that is, the host-
associated or environmental data. For example, this includes
age, biological sex, health status, or body mass index (BMI)
for human subjects; captivity status and species identifiers for
animals; or water depth and filter sizes for ocean samples.
In other contexts, metadata can also be regarded as techni-
cal data about an experiment—for example, on sample stor-
age, DNA extraction protocols, and sequencers. The contex-
tual data gathered here is considered as being metadata from
a microbiological perspective, but is actually the primary data
e.g. from the clinical perspective. 

Several databases that link metagenomic sequencing data
and metadata have been developed in the past, with different
focuses for the covered sample types, sequencing approaches,
and levels of manual annotation (Table 1 ). Amplicon sequenc-
ing data is more prevalent and allows for more large-scale
analyses, but is limited in the taxonomic and functional res-
olution. Databases with a specialized focus may profit from
more in-depth annotation. However, the data can then not
be used for global analyses, e.g. to trace a species implicated
in disease development like Fusobacterium nucleatum in col-
orectal cancer [ 25 ] to other habitats like animal hosts. Unfor-
tunately, many of the databases have not been updated in sev-
eral years, and there is no repository of manually annotated
metadata that covers both host-associated and environmental
data. To overcome these limitations, we introduce Metalog, a
database of metadata for metagenomes across the globe with
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120 169 samples (Fig. 1 ). We describe the principles in con-
structing the database and the curation and annotation work,
the content of the database, and usage considerations along
with a usage example. 

Database construction 

Data in Metalog is organized by study, each of which can con-
tain any number of samples, potentially from different habi-
tats. Each sample in Metalog corresponds to one defined bio-
logical sample. For human and animal samples, the subject or
individual is also usually known, and multiple samples may be
available for the same subject: different sample types (such as
feces and saliva) for the same time point or the same sample
type through longitudinal sampling. Whenever possible, we
annotated both the subject identity and the time point. A given
sample may have been processed in multiple ways (e.g. to ex-
tract DNA or RNA), and different sequencing experiments
can be performed (e.g. amplicon or WGS sequencing). Met-
alog only contains samples with available metagenomic se-
quencing data; amplicon sequencing and metatranscriptomic
data are excluded. If multiple metagenomic sequencing runs
were available for a sample, they were pooled at the read
level for the computation of derived data such as taxonomic
profiles. 

Samples can be broadly split into host-associated and en-
vironmental data. Within the host-associated samples, most
are from human subjects, while among the environmental
samples, marine samples are the most prevalent category. We
therefore defined four templates that contain required and
desired metadata items, namely for human samples, animal
samples, ocean water samples, and other environmental sam-
ples. In the following, we describe the annotation process for
Metalog. 

Identification of relevant studies and publications 

As metadata annotation and quality control are labor-
intensive, Metalog cannot cover all published metagenomic
datasets. We identified relevant studies from the literature and
from the global set of microbiomes within the SPIRE database
[ 10 ], focusing on data from Illumina and compatible plat-
forms, which represent the bulk of the available sequencing
data. We expect that long-read sequencing data will become
more prevalent and will be added to Metalog in the future.
If necessary, we manually associated publications and project
accessions. Studies were assigned a human-readable code con-
sisting of the last name of the first author, the publication
year of the preprint or paper, and a short, tag-like descrip-
tion. For large datasets and consortia such as the Human Mi-
crobiome Project (HMP) or TARA, the project name is used
instead of any individual publication. If no associated paper
could be found, the INSDC database project accession num-
ber with a human-readable descriptive tag is used instead.
While most studies correspond to one INSDC project acces-
sion, some uploaders—such as the Joint Genome Institute—
create a new project accession for each sample. In this case, a
Metalog study encompasses many INSDC project accessions.

Annotation of samples 

We matched samples between the uploaded sequencing data
and all available metadata using the provided sample iden-
tifiers or other indications such as descriptions or names of
sequencing libraries. We manually checked for and resolved 

possible errors in INSDC submissions, such as amplicon data 
erroneously labeled as shotgun metagenome, individual sam- 
ples erroneously submitted as distinct runs under a common 

biosample accession (i.e. the runs need to be treated as sepa- 
rate biosamples), or biosamples erroneously split into multi- 
ple sample accessions (i.e. runs from these samples need to be 
combined at the read level). In this way, each sample in Met- 
alog corresponds to exactly one biological sample, but may 
not necessarily correspond to exactly one INSDC biosample 
accession. 

Whenever possible, we mapped metadata to standardized 

vocabularies, such as the Environment Ontology (ENVO) and 

the Uber-anatomy Ontology (UBERON) for habitats and sam- 
ple materials [ 38 , 39 ]. However, ontologies are constantly 
evolving and have varying coverage of the full breadth of habi- 
tats around the world, and can therefore not always provide 
exactly matching terms [ 39 ]. As ontologies change, they may 
set widely used terms as obsolete without always offering clear 
alternatives. For example, the ENVO term ENVO:00009003 

(“human-associated habitat”) has been made obsolete, even 

though it has been used to denote the habitat for the majority 
of human metagenomic samples in the INSDC. 

Extraction and annotation of tabular metadata 

We extracted tabular metadata from the biosamples 
databases, from supplementary tables or relevant data 
repositories, and if necessary also added information con- 
tained in the papers’ text, tables, or figures. We manually 
checked for and resolved inconsistencies and harmonized se- 
lected attributes as detailed below. Each of the four templates 
(human, animal, ocean water, and other environmental data) 
has a set of defined attributes that are relevant for the vast 
majority of studies, and the relevant field names used by data 
uploaders are mapped onto these attributes. In addition, we 
noticed that certain attributes occur across papers, such as 
physicochemical parameters in marine samples or the gesta- 
tional age in weeks for studies on infants. We harmonized 

these field names across studies whenever feasible. 

In-depth annotation of human samples 

In the case of human samples, each deposited sample should 

be linked to a single subject who participated in the study.
Thus, each sample is associated with a unique subject identi- 
fier; a few exceptional studies with pooled samples from mul- 
tiple individuals were excluded from Metalog. This is impor- 
tant in cases of longitudinal sampling, where one subject may 
have multiple deposited samples. Time points (in days) were 
therefore calculated for each subject based on the collection 

dates of the samples or additional information provided in 

the publication. The first available sample was always set to 

time point 0. If a study does not specify exact sampling inter- 
vals but rather a range, we set the time point to a reasonable 
approximation (e.g. if there is a follow-up sample taken after 
3–5 weeks, the time point would be at 28 days). Some studies 
contain follow-up samples, but do not provide the necessary 
information to link subjects or define the time point. In these 
cases, the time point field was left empty to indicate that there 
is no reliable information. 

Demographic variables such as age, sex, and BMI were also 

captured in the template after standardization. If the age of 
infants is given in days or weeks, we converted those values 
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Figure 1. Ov ervie w of the content on Met alog . ( A ) A map of the samples cont ained in Met alog , colored by sample t ype. Circles are scaled by the 
number of a v ailable samples with the same location. The large yellow circles mostly correspond to country-level associations for human samples, while 
the chains of blue circles illustrate the course of sampling expeditions. ( B ) Number of available met adat a annot ations. For each of the four sample 
categories, the count of the top 10 fields is shown (removing trivial fields such as sample accession, location, or publication identifiers that are known for 
almost all samples). Left side: column names used in the download files. Right side: human-readable field names shown on the website. Bars are 
colored according to the number of samples with the respective annotation. 
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into years. When the exact age is not given, an age range was
inferred from the methods section of a publication whenever
possible, e.g. labeling subjects as “infants” or within a given
range of years. 

As several factors impact the human gut microbiome, such
as antibiotics or other medication taken, administered FMT,
or diet change, capturing them is important. We included these
interventions whenever possible. On the broadest level, Met-
alog offers an “intervention” field that captures such broad
categories. Medication metadata in studies may use a variety
of synonyms and abbreviations or refer to groups of drugs.
To address this, we harmonized the given medication informa-
tion. Individual drugs are mapped to the ChEMBL database
[ 40 ], and groups of drugs to the Anatomical Therapeutic
Chemical (ATC) classification system (field name: “medica-
tion”). The download files also contain an additional au-
tomatically generated field, “medication_with_parents,” that
contains all matching drug classes for the individual medica-
tion annotations. For antibiotics, we also annotated the time
since the last course of antibiotic treatment, if this informa-
tion was given by the paper. If diet information was given, we
mapped it to four broad categories each for babies (breast-
fed; breastfed and solids; formula- and breastfed; formula-fed)
and everyone else (omnivore; pescetarian; vegan; vegetarian)
to enable comparisons across studies. If detailed diet informa-
tion was available, it is either kept as separate study-specific
columns or in the “diet_full” field. 

A similar challenge is the annotation of diseases. While
some publications provide only a broad classification of pa-
tients, for others it can be very detailed, including comorbidi-
ties. We annotated a field “subject_disease_status” whenever
possible. When a very detailed status was given, we summa-
rized this to a more general term to allow for comparisons
across studies. The full disease status was kept in an extra field
(“subject_disease_status_full”). In addition, three further cat-
egories were identified: cohort members, healthy controls, and
control patients. Cohort studies contain individuals drawn
from a general population, most of whom will be healthy, but
some of them can also have diseases that are not diagnosed
or reported in the study. Case–control studies usually feature
healthy subjects as controls. However, a few studies also con-
tain control patients, whose actual underlying disease has not
been annotated. For data analyses that focus on healthy sub-
jects, we suggest combining data from cohort studies and con-
trols. To investigate the effect of diseases, case–control studies
should be used, taking either the controls or control patients
into account. 

For a small number of studies, inconsistencies in the sample
naming and metadata indicated that there might be a wrong
assignment of subject identifiers. If these could not be cor-
rected from the given contextual data alone, we clustered sam-
ples based on Mash distances between the metagenomic reads
[ 41 ] to manually identify samples belonging to the same in-
dividual based on the clustering pattern, relying on the fact
that samples from the same individual generally have lower
distances than samples from different individuals [ 42 ]. If this
was not possible (e.g. in the case of fecal microbiota trans-
plants), we excluded the samples in question. 

In-depth annotation of other sample types 

For animal-associated data, we also inferred the subjects and
time points wherever possible. There are also studies where
material from multiple animals is pooled into one sample, and 

this information is available as an extra field. The host or- 
ganism is identified with the NCBI Taxonomy identifier [ 43 ],
usually at species level but in some cases at higher taxonomic 
levels as appropriate. Environmental datasets often contain 

measurements of pH, salinity, and other parameters, which 

we mapped to common column names. The deposited meta- 
data also often contains placeholder values such as “9999”
for missing columns, which we removed to indicate the miss- 
ing measurement. 

Generation of associated microbial data 

Sequencing data was collected and processed as described 

previously [ 10 ]. Taxonomic profiles were generated based on 

mOTUs version 3.0 [ 44 ], SPIRE-mOTUs [ 10 ], and MetaPhlAn 

4 [ 45 ]. In addition, predicted enterotypes [ 46 ] and fecal micro- 
bial loads [ 47 ] were computed for fecal samples from adults. 

Database content 

The Metalog database can be accessed at https://metalog. 
embl.de/. The website allows users to browse the samples 
by selecting metadata fields of interest, by searching for field 

names or metadata values, by zooming into interactive maps,
and by selecting samples with certain medication, diseases, or 
habitat from hierarchical trees. Users can download the whole 
database or individual studies in different formats. While the 
website makes it possible to select a number of combinations 
of metadata (e.g. to select gut microbiome data for women 

from the USA who suffer from colorectal cancer), more com- 
plex analysis and filtering tasks should be done by download- 
ing the metadata and analyzing it in statistical analysis soft- 
ware or a programming language. Studies and samples contain 

links to the original publications, sequencing databases, and 

the SPIRE database. Downloadable metadata files contain the 
identifier used by the SPIRE database. This makes it possible 
to link the annotated metadata from Metalog to functional 
data in SPIRE, such as antibiotic resistance and protein func- 
tion annotations [ 10 ]. Metalog is continually updated, and the 
internal development database is synchronized with the public 
website every weekend. All download files contain the date of 
the last website update in the filename. Additionally, all sam- 
ples contain a timestamp of their last update in the database 
and the downloadable metadata files. 

Metalog currently contains metadata for 73 082 human 

samples, 10 703 animal samples, 5146 ocean water samples,
and 21 802 samples from other environmental habitats such 

as soil, sediment, or fresh water. These samples are distributed 

all over the world (Fig. 1 A), although the bias in the avail- 
ability of samples toward Western and East Asian countries is 
apparent. Some metadata attributes are widely available, e.g.
age category for humans (91%), captivity status for animals 
(99%), and water depth for ocean water samples (100%, Fig.
1 B). Combinations of metadata items are available with lower 
counts, e.g. a study investigating the microbiome influenced by 
both exact age and BMI could make use of 17 324 samples. 

In addition to the metadata, taxonomic profiles with match- 
ing sample identifiers are available for download based on 

mOTUs version 3.0 [ 44 ], SPIRE-mOTUs [ 10 ], and MetaPhlAn 

4 [ 45 ]. While the mOTUs profiler provides data for bacte- 
ria and archaea, MetaPhlAn also yields profiles for fungi and 

https://metalog.embl.de/
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Figure 2. A usage example for Met alog , showing associations between gut bacteria and medication. ( A ) Top: Number of samples per medication for 
which the drug was given and the number of samples from the same studies without drug treatment. Bottom: Number of significant associations 
( q -value cutoff: 0.01). ( B ) Volcano plots for the two drug classes with the highest number of positive and negative associations. 
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ther eukaryotes. Predicted enterotypes [ 46 ] and fecal micro-
ial loads [ 47 ] are available for fecal samples from adults. 

sag e consider ations 

amples with artificial perturbations 

 number of studies include negative controls or mock com-
unities for quality control. These are included in the down-

oadable data and will need to be filtered out for most appli-
ations. Studies may also employ cell sorting, in vitro culti-
ation, macrocosm experiments, or spike-in of certain species
or specific questions. While these samples are still valuable for
meta-analyses that focus on the genomic content, they should
be removed for analyses that focus on relative abundances
as these experimental treatments may perturb species abun-
dances (field name: “artificial”). We also flagged post-mortem
and paleo-samples in this field. 

Unreported metadata 

The metadata that is available varies greatly between studies.
Many papers on clinical findings report only the disease status
of the subjects, but not, for example, medication usage. This
is often the case even when the authors show in their analysis
that drug treatment or other factors play an important role in
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shaping the microbiome and the reported biomarkers. A meta-
analysis of drug treatment could therefore be restricted to in-
clude studies that consist of only healthy (and mostly unmedi-
cated) subjects and of clinical studies that report at least some
medication information, so that one can assume that subjects
without a reported medication are indeed treatment-free. 

Geographic locations 

Environmental samples usually have exact geographical co-
ordinates associated with them. For human samples, location
information is often only available at the country level, but
sometimes also a city, region, or clinical center where the sam-
ples have been taken is known. We have annotated this infor-
mation whenever possible (field “location_resolution”). For
country-level data, we set the location to a standard set of co-
ordinates that are close to the center of the country, weighted
by regional population data [ 48 ]. In this way, all country-level
datasets are combined in the map display, and the coordinates
are close to the population centers (e.g. being in the south of
Canada instead of close to the Arctic Circle). When taking the
geographic location of a sample into account, it is important
to consider the resolution of the location that has been anno-
tated. A calculation of the distance between two samples will
necessarily involve some uncertainty unless the exact coordi-
nates are known for both samples. 

Usage example 

To illustrate the ease of use and combined strength of meta-
data and taxonomic profiles, we provide an example use case
on the website that also serves as a tutorial in accessing the
data. For all human samples, we selected fecal samples from
adults with available disease status. We extracted the infor-
mation on medication taken by the subjects and clustered the
medication records to collapse redundant data. In some cases,
medication and disease status were completely confounded
and therefore excluded (e.g. all subjects in the current Meta-
log version with helminthiasis had been treated with albenda-
zole). For each medication, we identified all studies in which
the medication was administered. We then selected samples
for which either the medication under consideration or no
medication was given (Fig. 2 A, top). We then computed lin-
ear models between log-transformed bacterial abundance and
medication, taking the study and the disease status into ac-
count. Filtering at a false discovery rate threshold of 0.01, we
found 16 medications that showed significant associations be-
tween bacteria and drug treatment. Fluoroquinolones (ATC
code J01MA, like ciprofloxacin) had the highest number of
associations (Fig. 2 ). Interestingly, the antibiotic vancomycin
had the highest number of significant positive associations.
The analysis presented here only takes study effect and disease
status into account. More focused studies would also focus
on demographic factors and take other confounding variables
into account, like co-treatment with multiple drugs [ 49 ]. 

Discussion 

Metalog makes it possible for researchers to integrate metage-
nomics data and metadata from 919 studies across the globe
(and even the International Space Station). It increases the
discoverability of studies and provides links between the de-
posited data and the underlying research papers, encouraging
proper citation of the primary data sources. Parts of the meta-
data collected for Metalog have already been used in previous 
publications—for example, to ascertain the disease specificity 
for a biomarker panel for pancreatic duct carcinoma [ 50 ], to 

investigate the associations between fecal microbial load and 

various host-associated features [ 47 ], to trace strain dynamics 
after FMT [ 51 ], and to investigate the prevalence of C. dif- 
ficile across different age groups and environments [ 52 ]. In 

addition to our initial intention to establish Metalog as a re- 
source for microbiome research, we anticipate that it may also 

be useful for the development of Artificial Intelligence (AI)- 
assisted annotation systems for the extraction of sample-level 
metadata. A first such approach extracts information about 
the ecological environment [ 53 ], which could also be cross- 
checked with sequence-based habitat predictions [ 54 ]. Such 

an AI-based system would need to pull together tabular data 
from a variety of sources, be able to infer common identifiers,
have access to a target vocabulary for given fields, and be able 
to flag conflicts between different sources of information. 

We encourage researchers across all areas of microbiol- 
ogy to make the gathered contextual data as readily avail- 
able as possible, ideally by adding it as metadata along with 

the biosamples when uploading sequence data to a repository.
This facilitates direct reuse by other researchers and makes 
it easier for the dataset to be added to integrated databases 
like Metalog. Crucial information like disease status, medica- 
tion, time interval between samples, and basic demographics 
should be reported whenever possible, even if not all available 
metadata can be shared due to privacy concerns. 
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