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Abstract 

T he perv asiv e a v ailability of publicly a v ailable microbial genomes has opened man y ne w a v enues f or microbiology research, y et it also demands 
robust quality control and consistent annotation pipelines to ensure meaningful biological insights. proGenomes4 (prokaryotic Genomes v4) 
addresses this challenge by providing a resource of nearly 2 million high-quality microbial genomes, a doubling in scale from previous versions, 
encompassing o v er 7 billion genes. Each genome underwent rigorous quality assessment and comprehensive functional annotation by applying 
multiple st andardized annot ation w orkflo ws, including the sy stematic identification of mobile genetic elements and biosynthetic gene clusters. 
proGenomes4 contains 32 887 species with ecological habitat metadata as well as precomputed pan-genomes. This substantially expanded re- 
source provides the microbiology community with a f oundation f or large-scale comparative studies and is freely accessible via a newly developed 
command line interface and at https://progenomes.embl.de /. 
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ntroduction 

he first microbial genomes were sequenced > 30 years ago
 1 ], yet the availability of large-scale genomics data remains a
river for discovery and innovation [ 2 ]. Nowadays, the avail-
bility of high-quality, low-cost genome sequencing using both
hort and long reads ensures that high-quality genomes can be
ssembled for any cultured organism [ 3 ]. Nevertheless, to gain
iological insight from these ever-growing data sets, scientists
eed access to high-quality genomes with consistent annota-
ions [ 4 ]. 

Microbial genomes are available from a variety of
atabases. The NCBI RefSeq database [ 5 ] is a prominent
xample providing access to a wide range of genome se-
uences, yet it only provides gene names, gene symbols,
nd EC numbers as annotations for coding sequences. Sim-
lar information, often enriched by specific annotations, is
vailable from the PATRIC (Pathosystems Resource Inte-
ration Center) database [ 6 ], Ensembl Bacteria [ 7 ], and the
oint Genome Institute Integrated Microbial Genomes & Mi-
robiomes database [ 8 ]. More recently, the AllTheBacteria
atabase has combined de novo assemblies of genomes from
ublic repositories with functional annotations [ 9 ]. In addi-
ion, databases such as SPIRE, MGnify, and motus-db provide
illions of metagenome-assembled genomes (MAGs) [ 10 , 11 ].
he Genome Taxonomy Database (GTDB) [ 12 ] is a dedicated,
enomics- and phylogeny-based consistent taxonomy cover-
ng bacteria and archaea, comprising both reference genomes
nd MAGs. GTDB resolves many inconsistencies in previous
axonomies and provides an automated way to find and cor-
ect submitter errors. 

In addition to such taxonomic annotation consistency,
unctional annotations have the same requirement, as has
abitat information. Habitat information in particular is often

nconsistent or missing as it depends on submitters. To address
his issue, multiple resources linking microbes to environ-
ents have been established, including Microbe Atlas Project

MAP) [ 13 ] and Omnicrobe [ 14 ]. proGenomes4 (prokaryotic
enomes v4) integrates and links to MAP, which uses a com-
rehensive, annotated 16S ribosomal RNA (rRNA) catalog to
ink taxa to habitats, which are organized in an ontology. 

Another important yet often neglected issue in microbial
enomic databases is genome quality. Tools such as CheckM
 15 , 16 ] and GUNC [ 17 ] provide the means to consistently
ssess the quality of genomes at scale. 

Here, we present the proGenomes4 database, which pro-
ides nearly 2 million high-quality bacterial and archaeal ref-
rence genomes of isolates (twice as many as in the previ-
us version). proGenomes enables researchers’ direct access
o deeply and consistently annotated, high-quality genomes,
roviding information relevant for many different disciplines

ncluding but not limited to microbial evolution, ecology, and
linical and applied microbiology [ 18 –20 ]. Genome quality is
ssured by using checkM2 and GUNC [ 16 , 17 ]. Multiple an-
otation layers provide both general functional annotations
ia eggNOG [ 21 ] as well as specialized information about
.g. mobile genetic elements (MGEs) [ 22 ] and biosynthetic
ene clusters (BGCs) [ 23 ] for over 8 billion genes. Further,
he genomes are linked to other databases and resources, pro-
iding comprehensive access to information. proGenomes4 is
esigned to provide direct and easy access to the data and
nformation needed for comparative analyses of prokaryotic
enomes at any scale. The database can be accessed via a
newly developed command line interface for bulk downloads
and is available at https:// progenomes.embl.de/ . 

Database construction and characteristics 

proGenomes4 is accessible via its website ( https:
// progenomes.embl.de/ ), which gives users access to all
data and enables them to browse the available microbial
genomes. By specifying NCBI assembly ID or the taxonomic
name of the organism, species or clade in the search bar, users
can interactively find and explore information about their
desired organisms. In addition, the downloads section allows
users to download precomputed bulk files providing e.g.
the genomes and annotations of all species representatives.
Major upgrades of the underlying computational pipeline
and dataset are planned every two years. 

Genome collection 

All 3.1 million bacterial and archaeal genomes available
in the NCBI Nucleotide database were downloaded on 3
April 2025 using NCBI Datasets CLI (version 18.4.0) [ 24 ].
First, we removed duplicate genomes (i.e. genomes present
in multiple NCBI databases under different but linked acces-
sions) and those marked as “suppressed” or “derived from
metagenomes.” Open reading frames were predicted for these
genomes using prodigal (v2.6.3) (default parameters) [ 25 ].
Genomes with a circular, closed assembly were treated as high
quality by default. Other incomplete genomes were filtered
to only retain high-quality genomes using CheckM2 (v1.1.0)
[ 16 ] and GUNC (v1.0.6) [ 17 ] (CheckM: completeness > 90%
and contamination < 5%; GUNC: contamination < 5% and
clade separation score < 0.45). This quality control step re-
moved 1.2M genomes, with 1.9M high-quality genomes re-
maining (Fig. 1 ). 

Delineating species 

We used an ANI (average nucleotide identity)-based approach
to consistently delineate species [ 26 ]. In short, we first preclus-
tered genomes using Mash v2.3 (parameter -d 0.1) [ 27 ] under
a single linkage algorithm, ensuring that all pairs of genomes
sharing ≥90% mash similarity are part of the same precluster.
Preclusters were then resolved using average linkage clustering
at ≥95% ANI [calculated using fastANI (1.32) [ 26 ]] to obtain
species-level clusters. 

Selection of representative genomes 

With the steady increase in genomes, there are many species
now for which genomes from multiple reference strains are
now available, leading to a certain degree of redundancy.
While proGenomes4 continues to provide annotations for
all high-quality genomes, many applications require nonre-
dundant genome set (e.g. metagenomic read mapping or
metagenomics-based strain tracking [ 28 , 29 ]) 

As for previous versions, proGenomes4 provides a nonre-
dundant set of representative genomes. Precomputed FASTA
files of all representative genomes can be downloaded directly
on the proGenomes website. 

For the majority of species, we chose representatives by
genome quality and citation statistics. For 820 species, how-
ever, we utilized a manually curated list of strains that are
de facto representatives of their respective species, e.g. My-
cobacterium tuberculosis H37Rv. Otherwise, we filtered each

https://progenomes.embl.de/
https://progenomes.embl.de/
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Figure 1. Growth of proGenomes across versions. Overall number of 
species, high-quality genomes, and genes in proGenomes (2017), 
proGenomes2 (2020), proGenomes3 (2023), and proGenomes4. The 
number of species in proGenomes3 is shown with and without MAGs, 
for proGenomes4 all possible MAGs were excluded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Curated habitat annotations. The number of isolates annotated 
to the different habitats is shown. 
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species genome set to only contain complete genomes and
chose the most highly cited strain out of those [ 30 ]. If a species
did not have a single complete genome, the genome assembly
with the highest N50 statistic was selected. 

Pan-genomes 

Many species in proGenomes4 are represented by many dif-
ferent genomes. To provide users with a simple way to study
all genes encoded by a species, we precompiled pan-genomes
for every species in the form of a nonredundant gene set. The
nonredundant gene sets were generated using mmseqs2 [ 31 ]
(version: 18) using following parameters: –min-seq-id 0.95 -c
0.90 –cov-mode 0 

Functional annotation 

Functional annotations are one main aspect of proGenomes,
with the goal of providing accurate, consistent, and broad an-
notations. General functional annotations were generated us-
ing eggNOG-mapper [ 32 ] (version:2.1.12). This results in as-
signments to functionally annotated orthologous groups from
eggNOG 5.0 [ 33 ]. This broad annotation effort resulted in ∼6
billion predicted proteins to be annotated to existing ortholo-
gous groups. 

Carbohydrate utilization is one of the major sources for
microbial energy generation. Hence, there are dedicated tools
and databases providing carbohydrate-active enzyme annota-
tions. For proGenomes4, we are utilizing Cayman, which has 
been shown to be highly accurate [ 34 ]. 

Antimicrobial resistance genes were annotated using Abri- 
cate 1.0.1 with three different databases (i.e. vfdb, megares,
and deeparg 1.0.4) 

We used proMGE to identify MGEs across representa- 
tive genomes, using recombinases as annotation anchors and 

pangenome information for determining MGE boundaries 
[ 22 ]. 

Similar to MGEs, enzymes often function in conjunction 

with the enzymes encoded by neighboring genes. Such BGCs 
often encode for the cellular machinery producing ecologically 
or clinically relevant metabolites. We predicted the presence of 
BGCs using GECCO (v0.9.8) [ 23 ]. 

Habitat information 

There has been a growing interest in consistent habitat anno- 
tations for microbial genomes, both for large scale analyses 
and classical microbiology applications. proGenomes4 uses 
both source information (via BV-BRC v3.53.3, accessed on 11 

September 2025 [ 35 ]) and species detection in environmental 
sequencing data (via MAP [ 13 ]) to provide such annotations.
BV-BRC habitat annotation enabled us to annotate 379 068 

out of 1.9 M genomes (Fig. 2 ), which represents a two-fold 

increase of annotated genomes compared to the previous ver- 
sion of the database (proGenomes3). 

To annotate habitats using the MAP, we extracted 16S 
rRNA genes from genomes and matched them to the se- 
quences in the MAP v3 database using MAPseq [ 36 ]. Next,
we linked proGenomes species clusters and 98% MAP Op- 
erational Taxonomic Units (OTUs) using the mapped 16S se- 
quences. By applying a majority rule, the best matching MAP 

OTU was identified for each proGenomes species cluster if at 
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east 80% of the 16S sequences of a given proGenomes species
luster were mapped to the same 98% MAP OTU. 

inks to outside databases 

ven though proGenomes4 provides many different annota-
ion tracks, dedicated databases often provide details that can-
ot be mirrored. Instead, we chose to add additional links to
utside databases such as NCBI Genome [ 24 ], BacDive [ 37 ],
TDB [ 12 ], and MAP [ 36 ] enabling direct access. 

atabase design 

t its core, proGenomes4 is a PostgreSQL-powered relational
atabase system, which stores all obtained information on the

ncluded genomes and their features. The website can directly
nteract with the database and make the information avail-
ble to the users. To efficiently access the sequence informa-
ion (genomes, gene, and protein sequences), indexed FASTA
atfiles are utilized. 

rogrammatic access 

n this version, we make available a command line tool
nd Python package to facilitate high-throughput use of the
atabase. Users can easily download genome sets by habi-
at and genomic datasets. The tool maps the various artifacts
n the database to facilitate download by users. It contains
wo main subcommands: view and download. The first al-
ows users to preview datasets from proGenomes4 in the com-
and line. The download command allows the selection of

ither datasets or genomic sets as the download target. For
enomic sets, it also enables users to select which components
o download for each habitat: contigs, genes, and proteins.
he functional annotations for all representative genomes are
lso available via the command line tool. 

The command line tool is available at https://github.com/
igDataBiology/progenomes-cli and can be readily installed
ia pypi. 

ebsite 

roGenomes4 can be accessed via its dedicated website ( https:
/progenomes.embl.de ). The genomes of taxonomic groups as
ell as specI clusters can be accessed easily via a search func-

ion. For each genome, we provide the information stored
ithin proGenomes3 as well as direct links to external
atabase entries. 

uture outlook 

roGenomes will continue to be developed actively, ocaften
n response to user feedback. We aim to add additional an-
otation tracks in future releases as well as to improve the
ptions for programmatic access introduced in the current
elease. Further, we are striving to improve integration with
ther resources and will determine best practices for this pur-
ose. 

iscussion 

roGenomes4 offers easy and direct access to over 2 million
igh-quality genomes, including multiple functional annota-
ion tracks, as well as taxonomic and habitat assignments
ia a dedicated website. The website further provides links

o relevant entries in related databases and direct download  
of bulk data. proGenomes serves a broad user base ranging
from microbiologists interested in well-annotated genomes for
strains used for wet-lab experiments to artificial intelligence
researchers interested in microbial genome dynamics. Across
its different versions, proGenomes has been used as a foun-
dation for multiple widely used resources such as eggNOG,
mOTUs, and Spire. 

proGenomes4 will continue to be a valuable resource,
which we expect to be widely used by a broad range of re-
searchers. 
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