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Abstract

Microbes differ greatly in their organismal structure, physiology, and environmental adaptation, yet information about these phenotypic traits is
dispersed across multiple databases and is largely unavailable for taxa that remain uncultured. Here, we present metaTraits, a unified and acces-
sible trait resource that integrates culture-derived trait information from BacDive, BV-BRC, JGI IMG, and GOLD with genome-based predictions
for medium and high-quality isolate and metagenome-assembled genomes (MAGs) from proGenomes and SPIRE. metaTraits covers over 2.2
million genomes and > 140 harmonized traits mapped to standardized ontologies, spanning cell morphology (e.g. shape, size, and Gram staining),
physiology (e.g. motility and sporulation), metabolic and enzymatic activities, environmental preferences (e.g. temperature, salinity, and oxygen
tolerance), and lifestyle categories. All records are linked to the original evidence, and species are cross-linked to NCBI and GTDB taxonomies.
The interactive metaTraits website provides search and visualization tools, taxonomy-level summaries, and two workflows for annotating user
submitted genomes or community profiles. metaTraits substantially advances accessibility and interoperability of microbial trait data, enabling
comprehensive trait-based analyses of microbiomes across diverse environments. metaTraits is accessible via https://metatraits.embl.de.
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Introduction ize diverse global microbial habitats [4], to study func-
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Knowledge of microbial phenotypic traits provides essen-
tial insights into microbial functions, ecology, and inter-
actions within both environmental and human-associated
ecosystems. Trait information has been used to inform eco-
logical modeling [1, 2], to investigate the codiversifica-
tion of humans and their gut microbes [3], to character-

tional microbiome shifts in disease contexts [5, 6], and
to reveal links between traits and biogeographical and
social patterns in microbial strain sharing networks [7,
8], among many other applications. Despite their broad
utility and recognized importance, microbial phenotypic
trait data remain fragmented across several culture-based
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repositories, limiting comprehensive and large-scale biological
analysis.

Among the most widely used trait databases, BacDive [9]
provides detailed trait data for ~100 000 strains (i.e. records
describing individual cultivated microbial entities, with or
without genome sequences) from 21000 species, while re-
sources such as BV-BRC (formerly PATRIC [10]), JGI’'s IMG
[11], and GOLD [12] also capture trait metadata as part
of their genome and sample submissions. However, these
databases vary in their data models and curation standards,
and trait records are not harmonized across sources, mak-
ing integration into comparative genomics and microbiome
research challenging. As a result, most published analyses rely
on a single source and are often limited to well-studied, culti-
vated isolates.

Several efforts have aimed to unify microbial trait data.
Madin et al. [13] standardized 26 data sources into a single
trait resource for roughly 170000 microbial records, while
BactoTraits [14] mined BacDive and other datasets to assem-
ble 19 core traits for nearly 20 000 microbes. Earlier projects,
such as the Microbe Directory [15], pioneered a community
curation approach to trait annotation. Unfortunately, these re-
sources have either not been updated for years, focus exclu-
sively on isolates, cover a limited set of traits, or lack interac-
tive platforms for data exploration and annotation.

Crucially, the vast majority of prokaryotic diversity re-
mains uncultured. Recent estimates suggest that 62% of rec-
ognized microbial phyla and 73% of species are represented
only by metagenome-assembled genomes (MAGs) [16]. Exist-
ing isolate-focused databases thus overlook much of the mi-
crobial world, leading to large gaps in trait coverage. Com-
putational methods such as BacDive-Al [17], GenomeSPOT
[18], MICROPHERRET [19], and Traitar [20] have emerged
to enable the prediction of microbial traits from genome se-
quences, potentially extending trait annotation to hundreds of
traits (albeit with different accuracy) across millions of pub-
licly available genomes. Yet, no resource systematically inte-
grates both curated culture-derived traits and genome-based
predictions across large-scale genome catalogs.

Here, we present metaTraits, a unified and accessible mi-
crobial trait resource that harmonizes trait data from major
culture-based databases and systematically extends trait anno-
tation to both isolate genomes and MAGs using genome-based
prediction tools. metaTraits integrates phenotypic trait data
for 2.2 million genomes from over 100000 SPIRE species-
level clusters (>95% average nucleotide identity), encompass-
ing >140 harmonized traits relevant to microbial morphol-
ogy, metabolism, lifestyle, and ecology, among others. All data
are mapped to standardized ontologies, cross-linked to exter-
nal resources, and made available in alignment with FAIR
principles [21]. By bridging the gap between culture-based
and genome-based data, metaTraits enables trait-based micro-
biome analyses at an unprecedented scale and scope. The re-
source is accessible via an interactive website that supports
user-friendly trait exploration and annotation workflows.
metaTraits is openly available at https:/metatraits.embl.de.

Database construction

Integrating phenotypic trait data from public
databases

metaTraits integrates microbial phenotypic trait information
from major public databases, including BacDive, JGI IMG
and GOLD, and BV-BRC. The integrated data encompass mi-

crobial physiology (e.g. motility and sporulation), environ-
mental preferences (e.g. oxygen requirements, pH, salinity,
and temperature), morphology, metabolic and enzymatic ac-
tivities, and more. Source data were collected via APIs or
downloaded as tabular metadata files. To ensure consistency,
trait data were manually recoded and converted to common
data types and units, with harmonization of trait and cate-
gory naming, correction of spelling and number formatting er-
rors, and removal of significant outliers. For the isolate-centric
databases, metaTraits captures 1182280 trait observations
across 17159 species (GTDB; Table 1).

Genome-based prediction of phenotypic traits

To address the substantial gaps resulting from uncultured
taxa, metaTraits systematically incorporates genome-based
phenotypic trait predictions using state-of-the-art computa-
tional tools, including BacDive-Al [17], GenomeSPOT [18],
MICROPHERRET [19], and Traitar [20]. These predictions
enable extrapolation of phenotypic traits to novel taxa based
solely on genomic data, vastly expanding trait coverage be-
yond what is possible from cultured species alone. As these
tools have been trained on different sets of genomes and phe-
notypes, their predictions inevitably vary in scope and accu-
racy. To reflect this, metaTraits emphasizes transparency by re-
taining provenance information for every trait and by summa-
rizing predictions through an aggregation strategy (see below)
that conveys both consistency and uncertainty across taxa.

Genome-based trait predictions were generated for 906 855
high-quality (CheckM2 [22] completeness > 90%, contam-
ination < 5%, and GUNC [23] passed) isolate genomes
from proGenomes3 [24], and 1102 679 medium- and high-
quality (CheckM2 [22] completeness > 50%, contamina-
tion < 5%, and GUNC [23] passed) MAGs from SPIRE [25].
In total, this approach yielded 207 million trait predictions.
By incorporating MAGs derived from environmental sam-
ples, the dataset encompassed a broader phylogenetic diver-
sity, enabling trait coverage across a wider range of taxa
(Fig. 1A and B). Notably, the increase in trait annotation
coverage relative to experiment-based datasets was particu-
larly pronounced in clades that are rarely isolated or culti-
vated, such as Patescibacteria and Nanoarchaeota (Fig. 1A
and Supplementary Figure S1).

Overall, metaTraits captures more than 144 traits (2855 if
individual chemical compounds are counted separately) that
are organized into 46 groups and observed across 64126
named species in GTDB r220 (104 722 by SPIRE clusters,
54 654 by NCBI taxonomy), representing the largest publicly
available collection of microbial phenotypic trait data to date.

Data standardization
To enhance interpretability and machine-readability, trait
names were mapped wherever possible to standardized vocab-
ulary terms. The Ontology of Microbial Phenotypes (OMP,
[27]) served as the primary framework for capturing micro-
bial phenotypic traits and experimental observations, supple-
mented as needed by terms (including composites thereof)
such as from MICRO [28], SNOMED [29], and Gene On-
tology (GO, [30, 31]). For each mapped term, metaTraits pro-
vides a direct link-out to the corresponding Ontology Lookup
Service (OLS, [32]) page, enabling users to easily explore def-
initions and relationships for each trait.

For taxonomy harmonization, we used taxonkit [33] via
pytaxonkit [34] to assign standardized taxonomy identifiers
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Table 1. Overview of microbial phenotypic traits and taxonomy covered by metaTraits

Observations/

Dataset Trait groups Predictions Records/Strains NCBI species GTDB species
All 144 207 340808 2238622 54654 65349
Culture-based records 58 1182280 229088 25204 17159
BacDive 55 859472 58192 14565 9468
BV-BRC 11 84411 18823 5153 4770
JGI IMG/GOLD 20 238397 152073 19247 13748
Genome-based 130 206158 528 2009534 48029 64126
predictions
proGenomes3 130 68697060 906 855 43305 44 884
SPIREv1 130 137461468 1102679 14023 35416
Genome statistics 6
BacDive-Al 9
GenomeSPOT 10
MICROPHERRET 52
Traitar 62
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Figure 1. Experimental and predicted trait coverage across the bacterial tree of life. (A) Phylogenetic tree of 23 112 bacterial genera based on GTDB
taxonomy release r220. From the innermost ring outward, red strips indicate genera for which experimentally derived trait information is available from
databases such as JGI GOLD, BacDive, and BV-BRC, while blue strips indicate genera with traits predicted from genome sequences using proGenomes
and SPIRE. Subsequent concentric gradient rings represent the proportion of species in each genus exhibiting the following traits: motility, Gram
staining, oxygen tolerance, growth temperature, and growth pH. The gray shade highlights the phylum Patescibacteria, for which experimentally derived
trait data are available for only 17 of 4581 species (0.37%), whereas prediction-based approaches provide trait annotations for 1677 species (36.7%). For
genus-level trees, the lowest common ancestor (LCA) of all species within each genus from the GTDB-species tree was designated as the genus node,
which was treated as a leaf in the reconstructed tree. As the GTDB taxonomy was used, all the LCAs were monophyletic with respect to their
corresponding genera by definition. The resulting trees were visualized using iTOL [26]. (B) Proportion of GTDB taxa with trait annotations across
taxonomic ranks. Blue lines represent coverage from prediction-based sources (proGenomes, SPIRE, and their combination), and red lines represent
coverage from experimental sources (BacDive, BV-BRC, JGI GOLD, and their combination). Prediction-based methods consistently achieve broader
coverage than experiment-based sources across all ranks.
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for both NCBI ([35], 2025-07-28) and GTDB ([36], release
r220). As there is no official taxonomic identifier system
for GTDB, we employed the GTDB taxdump (gtdb-taxdump
v0.5.0 r80-r220) provided by taxonkit for consistent map-
ping across the dataset. Not all trait records were annotated
with both NCBI and GTDB taxonomy, or had an associated
genome for taxonomic classification. However, since we had
a large set of fully classified genomes, we created a mapping
between the two systems: for each taxon in one taxonomy, a
corresponding taxon in the other was assigned if at least 85%
of genomes shared the same ID in both. This approach, with
an average agreement rate of 99.47% (GTDB to NCBI) and
99.87% (NCBI to GTDB), respectively, enables robust cross-
referencing between NCBI and GTDB taxonomies, which can
be useful for many applications beyond trait analysis.

Database content
Website

The metaTraits website (https:/metatraits.embl.de) central-
izes trait data in a unified and accessible resource. Users can
search and explore the database using either NCBI or GTDB
taxonomy, with the option to flexibly include or exclude spe-
cific data sources depending on the specific research require-
ments (e.g. to focus on culture-derived or genome-based pre-
dictions). Trait data are aggregated by taxonomy, enabling
trait summaries from species to phylum level and display-
ing distributions within relevant context. To reflect underly-
ing genomic variability, numerical traits are summarized by
their median, while binary and categorical traits report the
fraction of observations assigned to each class, along with
the total number of contributing observations and databases.
When trait data for a clade are consistent (>85% of observa-
tions in one category), a summary trait label is provided. This
aggregation strategy also makes prediction uncertainties vis-
ible: inconsistent predictions within a clade result in broader
distributions, and when fewer than 85% of genomes agree
on a state, the trait is flagged as “no robust majority.” Each
trait estimate is linked to its original evidence in the source
databases, ensuring transparency and verifiability, and addi-
tional link-outs to relevant external resources are available.
Downloadable taxonomy-level summaries support broad ac-
cessibility and seamless integration into downstream analyses.

Annotation of user-submitted data

Two annotation workflows for user-submitted data extend the
practical utility of metaTraits:

(i) Genome annotation: The Nextflow-based porTraits
workflow predicts microbial phenotypic traits for user-
submitted isolate genomes and MAGs by integrating
multiple genome-based prediction tools. Users provide
genome or MAG FASTA files as input, porTraits calls
genes with Prodigal [37], generates KO and PFAM ma-
trices via eggNOG-mapper [38], and computes trait
predictions using the models from BacDive-Al, Traitar,
and MICROPHERRET; GenomeSPOT is run directly
on the genome input. Taxonomic assignments are ob-
tained using reCOGnise (for NCBI taxonomy) and
GTDB-Tk [39] (for GTDB r220), which also enable
retrieval of similar trait records from the metaTraits
database for contextualization. For NCBI taxonomy
assignment, reCOGnise extracts mOTUs [40] mark-

ers with fetchMGs [41], aligns them to the COG
database using MAPseq [42], and assigns taxonomic
IDs. The porTraits workflow can be executed directly
on the metaTraits website (no registration required),
via the interface of the Cloud-based Workflow Man-
ager (https://clowm.bi.denbi.de, [43]), or their API. All
workflow code is openly available at https://github.
com/grp-bork/porTraits.

(i) Microbial community annotation: This workflow en-
ables users to annotate entire taxonomic profiles of mi-
crobial communities with trait information. It parses
outputs from commonly used taxonomic profiling
tools, maps features to taxonomic IDs, and annotates
taxa with trait data from selected sources. Supported
profilers currently include mOTUs [44], MetaPhlAn
[45], Kraken [46], Krakenuniq [47], Bracken [48],
Kaiju [49], as well as generic OTU tables with match-
ing taxonomies.

These workflows make metaTraits not only a comprehen-
sive reference resource but also an integrative tool compatible
with widely adopted microbiome analysis software.

Use cases and outlook

metaTraits provides a foundation for diverse research applica-
tions and integration into existing microbiome analysis work-
flows. Key use cases include:

* Quick taxonomic trait characterization: Researchers can
rapidly look up and summarize microbial traits at multi-
ple taxonomic levels. This is especially valuable for stud-
ies based on 16S rRNA gene amplicon data, which often
have resolution limited to the genus level. The ability to
query both NCBI and GTDB taxonomies within meta-
Traits further extends utility to a broad user base.

* Distribution and evolution of traits: Microbiologists can
assess whether traits observed or predicted for their
strains are typical or unusual within their phyloge-
netic context, and readily identify exceptions or outliers
within lineages. Overlaying traits with phylogenetic trees
can provide insights into their evolution (e.g. motility as
shown in Fig. 1A).

e Community trait annotation: Microbiome researchers
can annotate entire microbial communities with trait
prevalence and abundance profiles, enabling analyses
of functional and ecological patterns at the community
level. As shown in Fig. 2, such comparisons reveal dis-
tinct trait distributions across ocean, hot spring, soil,
and host-associated microbiomes (Fig. 2B) and highlight
functional shifts in health contexts, such as the increased
prevalence of oxygen-tolerant microbes during infection
(Fig. 2A). These profiles therefore facilitate the study of
associations between microbial functions, taxa, and en-
vironmental variables.

e Cross-database integration: Integration with resources
like SPIRE [25], GMGC [50], and Metalog (https://
metalog.embl.de/) supports comprehensive multi-omic
analyses, enabling researchers to relate traits and trait
profiles to community composition, gene prevalence, and
host or environmental data across databases.

e Traits in context: By combining traits of genomes or mi-
crobial communities with rich contextual metadata from
resources like Metalog, researchers can investigate how
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Figure 2. Trait-based comparisons of microbial communities using metaTraits. (A) Compositional shifts in microbes with distinct oxygen preference in
the human gut (data from Metalog [51]) among individuals with Clostridioides difficile infection before and after fecal microbiota transplantation (FMT),
compared to healthy controls. Bars show community-level relative abundances of aerotolerant (blue) and anaerobic (dark gray) taxa, as well as those that
are taxonomically unclassified, lack trait annotations, or have no annotation majority. The data reveal a marked enrichment of aerotolerant and depletion
of obligate anaerobic microbes during infection, which reverses following FMT. (B) Trait distributions across microbiomes from aquatic and terrestrial
environments, and various animal hosts (data from Kim et al. [4]). Shown are z-scored trait abundances across habitats for selected traits, including
Gram staining, sporulation, motility, and preferences for oxygen, temperature, and pH. Data are summarized across samples within each habitat,
reflecting distinct ecological and physiological characteristics of the microbes and their environments.

functional traits are distributed across ecosystems, bio-
geography, disease, or health status. For example, one
could explore whether certain traits are more common
in gut microbiomes of individuals with inflammatory
bowel disease, or how metabolic strategies differ be-
tween marine and freshwater samples. Ecologists can
also utilize trait information to build and test hypotheses
about the ecology and biogeography of prokaryotes.

Future updates to metaTraits will expand trait coverage,
incorporate new prediction tools and updated genome cat-
alogs, and enhance interoperability with external databases,
supporting the continued growth of trait-based microbiome
research.
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