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Abstract 

Microbes differ greatly in their organismal str uct ure, ph y siology, and en vironment al adapt ation, y et inf ormation about these phenotypic traits is 
dispersed across multiple databases and is largely una v ailable f or taxa that remain uncultured. Here, we present metaTraits, a unified and acces- 
sible trait resource that integrates culture-derived trait information from Bac Dive , B V -BRC, JGI IMG, and GOLD with genome-based predictions 
for medium and high-quality isolate and metagenome-assembled genomes (MAGs) from proGenomes and SPIRE. metaTraits co v ers o v er 2.2 
million genomes and > 140 harmonized traits mapped to standardized ontologies, spanning cell morphology (e.g. shape, size, and Gram staining), 
ph y siology (e.g . motilit y and sporulation), met abolic and enzymatic activities, environment al preferences (e.g . temperature, salinit y, and o xy gen 
tolerance), and lifestyle categories. All records are linked to the original evidence, and species are cross-linked to NCBI and GTDB taxonomies. 
T he interactiv e metaTraits w ebsite pro vides search and visualization tools, tax onom y -le v el summaries, and tw o w orkflo ws f or annotating user- 
submitted genomes or communit y profiles. met aTraits subst antially advances accessibilit y and interoperabilit y of microbial trait data, enabling 
comprehensive trait-based analyses of microbiomes across diverse environments. metaTraits is accessible via https://metatraits.embl.de . 
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ntroduction 

nowledge of microbial phenotypic traits provides essen-
ial insights into microbial functions, ecology, and inter-
ctions within both environmental and human-associated
cosystems. Trait information has been used to inform eco-
ogical modeling [ 1 , 2 ], to investigate the codiversifica-
ion of humans and their gut microbes [ 3 ], to character-
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ize diverse global microbial habitats [ 4 ], to study func-
tional microbiome shifts in disease contexts [ 5 , 6 ], and
to reveal links between traits and biogeographical and
social patterns in microbial strain sharing networks [ 7 ,
8 ], among many other applications. Despite their broad
utility and recognized importance, microbial phenotypic
trait data remain fragmented across several culture-based
25 
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repositories, limiting comprehensive and large-scale biological
analysis. 

Among the most widely used trait databases, Bac Dive [ 9 ]
provides detailed trait data for ∼100 000 strains (i.e. records
describing individual cultivated microbial entities, with or
without genome sequences) from 21 000 species, while re-
sources such as BV-BRC (formerly PATRIC [ 10 ]), JGI’s IMG
[ 11 ], and GOLD [ 12 ] also capture trait metadata as part
of their genome and sample submissions. However, these
databases vary in their data models and curation standards,
and trait records are not harmonized across sources, mak-
ing integration into comparative genomics and microbiome
research challenging. As a result, most published analyses rely
on a single source and are often limited to well-studied, culti-
vated isolates. 

Several efforts have aimed to unify microbial trait data.
Madin et al. [ 13 ] standardized 26 data sources into a single
trait resource for roughly 170 000 microbial records, while
BactoTraits [ 14 ] mined Bac Dive and other datasets to assem-
ble 19 core traits for nearly 20 000 microbes. Earlier projects,
such as the Microbe Directory [ 15 ], pioneered a community
curation approach to trait annotation. Unfortunately, these re-
sources have either not been updated for years, focus exclu-
sively on isolates, cover a limited set of traits, or lack interac-
tive platforms for data exploration and annotation. 

Crucially, the vast majority of prokaryotic diversity re-
mains uncultured. Recent estimates suggest that 62% of rec-
ognized microbial phyla and 73% of species are represented
only by metagenome-assembled genomes (MAGs) [ 16 ]. Exist-
ing isolate-focused databases thus overlook much of the mi-
crobial world, leading to large gaps in trait coverage. Com-
putational methods such as Bac Dive -AI [ 17 ], GenomeSPOT
[ 18 ], MICROPHERRET [ 19 ], and Traitar [ 20 ] have emerged
to enable the prediction of microbial traits from genome se-
quences, potentially extending trait annotation to hundreds of
traits (albeit with different accuracy) across millions of pub-
licly available genomes. Yet, no resource systematically inte-
grates both curated culture-derived traits and genome-based
predictions across large-scale genome catalogs. 

Here, we present metaTraits, a unified and accessible mi-
crobial trait resource that harmonizes trait data from major
culture-based databases and systematically extends trait anno-
tation to both isolate genomes and MAGs using genome-based
prediction tools. metaTraits integrates phenotypic trait data
for 2.2 million genomes from over 100 000 SPIRE species-
level clusters ( ≥95% average nucleotide identity), encompass-
ing > 140 harmonized traits relevant to microbial morphol-
ogy, metabolism, lifestyle, and ecology, among others. All data
are mapped to standardized ontologies, cross-linked to exter-
nal resources, and made available in alignment with FAIR
principles [ 21 ]. By bridging the gap between culture-based
and genome-based data, metaTraits enables trait-based micro-
biome analyses at an unprecedented scale and scope. The re-
source is accessible via an interactive website that supports
user-friendly trait exploration and annotation workflows.
metaTraits is openly available at https://metatraits.embl.de . 

Database construction 

Integrating phenotypic trait data from public 

databases 

metaTraits integrates microbial phenotypic trait information
from major public databases, including Bac Dive , JGI IMG
and GOLD, and BV-BRC. The integrated data encompass mi-
crobial physiology (e.g. motility and sporulation), environ- 
mental preferences (e.g. oxygen requirements, pH, salinity,
and temperature), morphology, metabolic and enzymatic ac- 
tivities, and more. Source data were collected via APIs or 
downloaded as tabular metadata files. To ensure consistency,
trait data were manually recoded and converted to common 

data types and units, with harmonization of trait and cate- 
gory naming, correction of spelling and number formatting er- 
rors, and removal of significant outliers. For the isolate-centric 
databases, metaTraits captures 1 182 280 trait observations 
across 17 159 species (GTDB; Table 1 ). 

Genome-based prediction of phenotypic traits 

To address the substantial gaps resulting from uncultured 

taxa, metaTraits systematically incorporates genome-based 

phenotypic trait predictions using state-of-the-art computa- 
tional tools, including Bac Dive -AI [ 17 ], GenomeSPOT [ 18 ],
MICROPHERRET [ 19 ], and Traitar [ 20 ]. These predictions 
enable extrapolation of phenotypic traits to novel taxa based 

solely on genomic data, vastly expanding trait coverage be- 
yond what is possible from cultured species alone. As these 
tools have been trained on different sets of genomes and phe- 
notypes, their predictions inevitably vary in scope and accu- 
racy. To reflect this, metaTraits emphasizes transparency by re- 
taining provenance information for every trait and by summa- 
rizing predictions through an aggregation strategy (see below) 
that conveys both consistency and uncertainty across taxa. 

Genome-based trait predictions were generated for 906 855 

high-quality (CheckM2 [ 22 ] completeness > 90%, contam- 
ination < 5%, and GUNC [ 23 ] passed) isolate genomes 
from proGenomes3 [ 24 ], and 1 102 679 medium- and high- 
quality (CheckM2 [ 22 ] completeness > 50%, contamina- 
tion < 5%, and GUNC [ 23 ] passed) MAGs from SPIRE [ 25 ].
In total, this approach yielded 207 million trait predictions.
By incorporating MAGs derived from environmental sam- 
ples, the dataset encompassed a broader phylogenetic diver- 
sity, enabling trait coverage across a wider range of taxa 
(Fig. 1 A and B). Notably, the increase in trait annotation 

coverage relative to experiment-based datasets was particu- 
larly pronounced in clades that are rarely isolated or culti- 
vated, such as Patescibacteria and Nanoarchaeota (Fig. 1 A 

and Supplementary Figure S1 ). 
Overall, metaTraits captures more than 144 traits (2855 if 

individual chemical compounds are counted separately) that 
are organized into 46 groups and observed across 64 126 

named species in GTDB r220 (104 722 by SPIRE clusters,
54 654 by NCBI taxonomy), representing the largest publicly 
available collection of microbial phenotypic trait data to date.

Data standardization 

To enhance interpretability and machine-readability, trait 
names were mapped wherever possible to standardized vocab- 
ulary terms. The Ontology of Microbial Phenotypes (OMP,
[ 27 ]) served as the primary framework for capturing micro- 
bial phenotypic traits and experimental observations, supple- 
mented as needed by terms (including composites thereof) 
such as from MICRO [ 28 ], SNOMED [ 29 ], and Gene On- 
tology (GO, [ 30 , 31 ]). For each mapped term, metaTraits pro- 
vides a direct link-out to the corresponding Ontology Lookup 

Service (OLS, [ 32 ]) page, enabling users to easily explore def- 
initions and relationships for each trait. 

For taxonomy harmonization, we used taxonkit [ 33 ] via 
pytaxonkit [ 34 ] to assign standardized taxonomy identifiers 

https://metatraits.embl.de
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1241#supplementary-data
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Table 1. Ov ervie w of microbial phenot ypic traits and t ax onom y co v ered b y metaTraits 

Dataset Trait groups 
Observations/ 
Predictions Records/Strains NCBI species GTDB species 

All 144 207 340 808 2 238 622 54 654 65 349 
Culture-based records 58 1 182 280 229 088 25 204 17 159 
Bac Dive 55 859 472 58 192 14 565 9 468 
BV-BRC 11 84 411 18 823 5 153 4 770 
JGI IMG/GOLD 20 238 397 152 073 19 247 13 748 
Genome-based 
predictions 

130 206 158 528 2 009 534 48 029 64 126 

proGenomes3 130 68 697 060 906 855 43 305 44 884 
SPIREv1 130 137 461 468 1 102 679 14 023 35 416 
Genome statistics 6 
Bac Dive -AI 9 
GenomeSPOT 10 
MICROPHERRET 52 
Traitar 62 
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Figure 1. Experimental and predicted trait co v erage across the bacterial tree of life. ( A ) Phylogenetic tree of 23 112 bacterial genera based on GTDB 

tax onom y release r220. From the innermost ring outward, red strips indicate genera for which experimentally derived trait information is available from 

databases such as JGI GOLD, B ac Div e , and B V -BRC, while blue strips indicate genera with traits predicted from genome sequences using proGenomes 
and SPIRE. Subsequent concentric gradient rings represent the proportion of species in each genus exhibiting the following traits: motility, Gram 

st aining , o xy gen tolerance, gro wth temperature, and gro wth pH. T he gra y shade highlights the ph ylum Patescibacteria, f or which e xperimentally deriv ed 
trait data are a v ailable f or only 17 of 4581 species (0.37%), whereas prediction-based approaches provide trait annotations for 1677 species (36.7%). For 
genus-le v el trees, the lo w est common ancestor (LCA) of all species within each genus from the GTDB-species tree was designated as the genus node, 
which was treated as a leaf in the reconstructed tree. As the GTDB taxonomy was used, all the LCAs were monophyletic with respect to their 
corresponding genera by definition. The resulting trees were visualized using iTOL [ 26 ]. ( B ) Proportion of GTDB taxa with trait annotations across 
taxonomic ranks. Blue lines represent coverage from prediction-based sources (proGenomes, SPIRE, and their combination), and red lines represent 
co v erage from experimental sources (Bac Dive , B V -BRC, JGI GOLD, and their combination). Prediction-based methods consistently achieve broader 
co v erage than experiment-based sources across all ranks. 
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for both NCBI ([ 35 ], 2025-07-28) and GTDB ([ 36 ], release
r220). As there is no official taxonomic identifier system
for GTDB, we employed the GTDB taxdump (gtdb-taxdump
v0.5.0 r80-r220) provided by taxonkit for consistent map-
ping across the dataset. Not all trait records were annotated
with both NCBI and GTDB taxonomy, or had an associated
genome for taxonomic classification. However, since we had
a large set of fully classified genomes, we created a mapping
between the two systems: for each taxon in one taxonomy, a
corresponding taxon in the other was assigned if at least 85%
of genomes shared the same ID in both. This approach, with
an average agreement rate of 99.47% (GTDB to NCBI) and
99.87% (NCBI to GTDB), respectively, enables robust cross-
referencing between NCBI and GTDB taxonomies, which can
be useful for many applications beyond trait analysis. 

Database content 

Website 

The metaTraits website ( https://metatraits.embl.de ) central-
izes trait data in a unified and accessible resource. Users can
search and explore the database using either NCBI or GTDB
taxonomy, with the option to flexibly include or exclude spe-
cific data sources depending on the specific research require-
ments (e.g. to focus on culture-derived or genome-based pre-
dictions). Trait data are aggregated by taxonomy, enabling
trait summaries from species to phylum level and display-
ing distributions within relevant context. To reflect underly-
ing genomic variability, numerical traits are summarized by
their median, while binary and categorical traits report the
fraction of observations assigned to each class, along with
the total number of contributing observations and databases.
When trait data for a clade are consistent ( ≥85% of observa-
tions in one category), a summary trait label is provided. This
aggregation strategy also makes prediction uncertainties vis-
ible: inconsistent predictions within a clade result in broader
distributions, and when fewer than 85% of genomes agree
on a state, the trait is flagged as “no robust majority.” Each
trait estimate is linked to its original evidence in the source
databases, ensuring transparency and verifiability, and addi-
tional link-outs to relevant external resources are available.
Downloadable taxonomy-level summaries support broad ac-
cessibility and seamless integration into downstream analyses.

Annotation of user-submitted data 

Two annotation workflows for user-submitted data extend the
practical utility of metaTraits: 

(i) Genome annotation: The Nextflow-based porTraits
workflow predicts microbial phenotypic traits for user-
submitted isolate genomes and MAGs by integrating
multiple genome-based prediction tools. Users provide
genome or MAG FASTA files as input, porTraits calls
genes with Prodigal [ 37 ], generates KO and PFAM ma-
trices via eggNOG-mapper [ 38 ], and computes trait
predictions using the models from Bac Dive -AI, Traitar,
and MICROPHERRET; GenomeSPOT is run directly
on the genome input. Taxonomic assignments are ob-
tained using reCOGnise (for NCBI taxonomy) and
GTDB-Tk [ 39 ] (for GTDB r220), which also enable
retrieval of similar trait records from the metaTraits
database for contextualization. For NCBI taxonomy
assignment, reCOGnise extracts mOTUs [ 40 ] mark-
ers with fetchMGs [ 41 ], aligns them to the COG 

database using MAPseq [ 42 ], and assigns taxonomic 
IDs. The porTraits workflow can be executed directly 
on the metaTraits website (no registration required),
via the interface of the Cloud-based Workflow Man- 
ager ( https://clowm.bi.denbi.de , [ 43 ]), or their API. All 
workflow code is openly available at https://github. 
com/ grp-bork/ porTraits . 

(ii) Microbial community annotation: This workflow en- 
ables users to annotate entire taxonomic profiles of mi- 
crobial communities with trait information. It parses 
outputs from commonly used taxonomic profiling 
tools, maps features to taxonomic IDs, and annotates 
taxa with trait data from selected sources. Supported 

profilers currently include mOTUs [ 44 ], MetaPhlAn 

[ 45 ], Kraken [ 46 ], Krakenuniq [ 47 ], Bracken [ 48 ],
Kaiju [ 49 ], as well as generic OTU tables with match- 
ing taxonomies. 

These workflows make metaTraits not only a comprehen- 
sive reference resource but also an integrative tool compatible 
with widely adopted microbiome analysis software. 

Use cases and outlook 

metaTraits provides a foundation for diverse research applica- 
tions and integration into existing microbiome analysis work- 
flows. Key use cases include: 

� Quick taxonomic trait characterization: Researchers can 

rapidly look up and summarize microbial traits at multi- 
ple taxonomic levels. This is especially valuable for stud- 
ies based on 16S rRNA gene amplicon data, which often 

have resolution limited to the genus level. The ability to 

query both NCBI and GTDB taxonomies within meta- 
Traits further extends utility to a broad user base. 

� Distribution and evolution of traits: Microbiologists can 

assess whether traits observed or predicted for their 
strains are typical or unusual within their phyloge- 
netic context, and readily identify exceptions or outliers 
within lineages. Overlaying traits with phylogenetic trees 
can provide insights into their evolution (e.g. motility as 
shown in Fig. 1 A). 

� Community trait annotation: Microbiome researchers 
can annotate entire microbial communities with trait 
prevalence and abundance profiles, enabling analyses 
of functional and ecological patterns at the community 
level. As shown in Fig. 2 , such comparisons reveal dis- 
tinct trait distributions across ocean, hot spring, soil,
and host-associated microbiomes (Fig. 2 B) and highlight 
functional shifts in health contexts, such as the increased 

prevalence of oxygen-tolerant microbes during infection 

(Fig. 2 A). These profiles therefore facilitate the study of 
associations between microbial functions, taxa, and en- 
vironmental variables. 

� Cross-database integration: Integration with resources 
like SPIRE [ 25 ], GMGC [ 50 ], and Metalog ( https:// 
metalog.embl.de/) supports comprehensive multi-omic 
analyses, enabling researchers to relate traits and trait 
profiles to community composition, gene prevalence, and 

host or environmental data across databases. 
� Traits in context: By combining traits of genomes or mi- 

crobial communities with rich contextual metadata from 

resources like Metalog, researchers can investigate how 

https://metatraits.embl.de
https://clowm.bi.denbi.de
https://github.com/grp-bork/porTraits
https://metalog.embl.de/
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functional traits are distributed across ecosystems, bio-
geography, disease, or health status. For example, one
could explore whether certain traits are more common
in gut microbiomes of individuals with inflammatory
bowel disease, or how metabolic strategies differ be-
tween marine and freshwater samples. Ecologists can
also utilize trait information to build and test hypotheses
about the ecology and biogeography of prokaryotes. 

Future updates to metaTraits will expand trait coverage,
ncorporate new prediction tools and updated genome cat-
logs, and enhance interoperability with external databases,
upporting the continued growth of trait-based microbiome
esearch. 
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Data availability 

All raw data underlying metaTraits v1 is publicly available
via proGenomes ( https:// progenomes.embl.de/ ), SPIRE ( https:
// spire.embl.de/ ), and the culture databases listed in Table 1 .
No new sequencing data were generated for this study. The
derived and curated data described above are freely acces-
sible and downloadable via https://metatraits.embl.de . No
registration is required. metaTraits is released under a Cre-
ative Commons Attribution-ShareAlike 4.0 International Li-
cense. Source code for the trait annotation workflow porTraits
is available at https:// github.com/ grp-bork/ porTraits and on
Zenodo (10.5281/zenodo.16809307). 
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