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Abstract 

Viruses are the most abundant biological entities on Earth, yet their global diversity remains largely unexplored. Here, we present VIRE, a compre- 
hensive resource comprising over 1.7 million high- and medium-quality viral genomes recovered from > 10 0 0 0 0 publicly available metagenomes 
derived from samples that cover diverse ecosystems, including host-associated, aquatic, terrestrial, and anthropogenic environments. Using a 
unified and scalable pipeline, w e sy stematically assembled viral genomes and provided detailed information on genome completeness, taxo- 
nomic classification, predicted lifestyle, and host assignment based on CRISPR spacer matches. VIRE contains > 89 million predicted viral open 
reading frames, as well as detailed functional annotations derived from multiple dat abases. Import antly, VIRE is seamlessly integrated with 
related microbiome resources such as SPIRE ( https://spire.embl.de ) and Metalog ( https://metalog.embl.de ), enabling users to jointly explore 
viral genomes, metagenome-assembled genomes, and associated environmental or clinical metadata. Accessible at https://vire.embl.de , VIRE 

provides an open-access, scalable platform for investigating viral diversity, evolution, and ecology on a planetary scale. 
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Introduction 

Viruses are estimated to number around 10 

31 particles on
Earth, making them the most abundant biological entities on
the planet [ 1 , 2 ]. Among them, bacteriophages, viruses that
infect bacteria, are now recognized as key players in micro-
bial ecosystems. Phages shape microbial community struc-
tures [ 3 , 4 ], facilitate horizontal gene transfer between bac-
teria [ 5 , 6 ], and drive biogeochemical cycles on Earth [ 7 –9 ].
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Despite their ubiquity and ecological importance, our un- 
derstanding of viral diversity has remained limited, largely 
due to the constraints of cultivation-based techniques. The 
advent of high-throughput sequencing technologies, particu- 
larly shotgun metagenomics, has revolutionized our ability to 

explore viral diversity directly from environmental samples 
[ 10 –12 ]. Over the past decade, metagenomic analyses and im- 
proved bioinformatic pipelines have uncovered an enormous 
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iversity of previously unknown viral genomes from a wide
ange of environments, including the human gut [ 13 –18 ], the
cean [ 19 –24 ], and soil [ 25 –28 ]. Yet these newly discovered
enomes likely represent only the tip of the iceberg among
 vast, largely unexplored viral “dark matter” across Earth’s
cosystems. Understanding the genetic and ecological diver-
ity of such environmental viruses is crucial for understanding
iral function, evolution, and host-virus dynamics [ 29 –31 ].
oreover, characterizing viral reservoirs in natural environ-
ents contributes to pandemic preparedness by providing
aseline data for identifying emerging zoonotic threats [ 32 ,
3 ]. To catalog the diversity of uncultivated viruses, previ-
us studies have developed specialized viral genome databases
rom metagenomic datasets. However, most existing resources
re environment-specific (e.g. human gut [ 13 –15 , 34 ], marine
 21 , 23 , 35 ], or soil [ 25 , 26 , 36 ]) with only a few exceptions
 37 , 38 ]. 

Here, we present VIRE (Viral Integrated Resource across
cosystems), a global-scale resource of viral genomes assem-
led from over 100 000 publicly available metagenomic sam-
les spanning diverse environments. VIRE contains > 1.7 mil-
ion medium- to high-quality viral genomes reconstructed
hrough a unified bioinformatics pipeline, making it the largest
iral genome database to date. Each genome is accompa-
ied by a rich set of metadata, including taxonomic classifi-
ation, predicted host organisms, predicted lifestyle (lytic or
emperate), and gene annotations derived from multiple func-
ional databases. Importantly, VIRE is seamlessly linked with
omplementary resources such as SPIRE ( https://spire.embl.
e ) [ 39 ] and Metalog ( https://metalog.embl.de ) [ 40 ], allowing
sers to access associated metagenome-assembled genomes
MAGs) and manually curated metadata of metagenomes, re-
pectively. VIRE provides a comprehensive and scalable plat-
orm for exploring global viral diversity, serving as a valu-
ble resource for virology, microbiome research, and micro-
ial ecology. 

aterials and methods 

dentification of viral sequences from 

etagenomes 

he core dataset of VIRE was constructed from a total of
01 623 metagenomic samples derived from 732 independent
tudies. The majority of these datasets were originally used in
he SPIRE resource [ 39 ] and consist of publicly available shot-
un metagenomes downloaded primarily from the European
ucleotide Archive (ENA) [ 41 ] or the Sequence Read Archive

SRA) [ 42 ], covering a wide range of environmental samples.
he datasets were collected through a semi-automated process
nd manually curated to exclude certain data types, such as
hose from artificial experimental systems (e.g. in vitro mock
ommunities, laboratory mice, or pathogen challenge stud-
es), as well as amplicon-based and isolate-derived sequences.

oreover, additional virome samples specifically enriched for
irus-like particles (VLPs, excluded from SPIRE) were incor-
orated into the dataset. Each metagenomic sample was anno-
ated with a standardized environmental ontology called mi-
rontology, which assigns at least one of 92 terms describing
he habitat of the associated microbial community [ 39 ]. 

Metagenomic reads were assembled using MEGAHIT
1.2.9 [ 43 ], generating contigs ( n = 24 883 275 724). For all
amples except newly added ones, we used assemblies that had
already been generated during the construction of the SPIRE
database [ 39 ], while newly added virome samples were as-
sembled de novo in this study. Contigs longer than 5 kb from
bulk metagenomes and those longer than 2 kb from virome
metagenomes ( n = 346 532 161) were subjected to viral detec-
tion using geNomad v1.5.2 [ 44 ] and CheckV v1.0.1 (database
version 1.4) [ 45 ]. Contigs with a viral score of ≥0.7 by geNo-
mad and classified as at least medium-quality by CheckV, de-
fined as completeness ≥50% and contamination < 10% [ 46 ],
were considered putative viral genomes ( n = 1 778 826). Vi-
ral sequences with a CheckV kmer_freq score ≥2 (indicative
of possible concatemeric repeats) were excluded ( n = 635).
To further improve specificity, Barrnap ( https://github.com/
tseemann/barrnap ) was used to screen for bacterial riboso-
mal RNA genes (5S, 16S, and 23S ribosomal RNAs), which
are rarely found in viral genomes, and contigs encoding any
of these genes were removed ( n = 5049). All data processing
steps were implemented in a Nextflow pipeline [ 47 ], ensuring
reproducibility and scalability. 

Collection of viral genomes from GenBank and 

R efS eq 

To obtain a set of high-confidence viral genomes with reli-
able taxonomic classification, we downloaded viral genomes
labeled as “complete genome” and taxonomically annotated
in the International Committee on Taxonomy of Viruses
(ICTV) [ 48 ] Release 40 from GenBank (accessed in July 2025;
n = 12 395) [ 49 ]. For segmented viruses, such as influenza
viruses, individual genome segments were concatenated into
a single sequence using a string of ten “N” nucleotides as sep-
arators. In addition, we retrieved viral genomes that were not
included in the above but were registered as viral genomes in
RefSeq (accessed in July 2025; n = 8052) [ 50 ]. These genomes
were processed in the same manner as metagenome-derived
viral genomes as described below. 

Clustering viral sequences into species- and 

genus-level groups 

All viral genomes were clustered into species- and genus-level
groups using vclust v1.2.2-b687638 [ 51 ]. Clustering was per-
formed at 95% and 70% average nucleotide identity (ANI)
and 85% alignment fraction (AF) with the Leiden algorithm
for species-level and genus-level clusters, respectively, follow-
ing current guidelines proposed by the ICTV [ 48 ]. 

Rarefaction curves for each environment were generated by
progressively subsampling increasing proportions of the full
viral genome dataset (10%, 20%, …, 100%). For each sam-
pling fraction, genomes were randomly sampled without re-
placement 10 times, and the resulting numbers of species-level
( > 95% ANI) and genus-level ( > 70% ANI) clusters were cal-
culated. The mean values across the 10 iterations were then
plotted to produce the curves. 

The species discovery coefficient ( α) was calculated for
each environment following the approach described previ-
ously [ 52 ]. In brief, we first determined the number of newly
discovered species from the rarefaction analysis for successive
increments of sampling effort. We then fitted a log–log lin-
ear regression model relating the number of newly discovered
species to the cumulative number of species observed, and cal-
culated α as the regression slope plus one. 

To evaluate the novelty of genomes in VIRE, we compared
viral genomes in VIRE with those from IMG/VR v4 (2022-12-

https://spire.embl.de
https://metalog.embl.de
https://github.com/tseemann/barrnap
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19_7.1) [ 37 ]. Because IMG/VR contains low-quality genomes,
only those annotated as medium-quality , high-quality , or com-
plete ( n = 1 059 662) were included for comparison. Cluster-
ing was performed using vclust with the Leiden algorithm un-
der the thresholds of ANI > 95% and AF > 85%. 

Host, gene, and lifestyle annotations 

To infer bacteriophage host, we employed a CRISPR spacer–
based method designed to minimize false positives [ 53 ]. We
extracted CRISPR spacers from ∼1.2 million MAGs from the
SPIRE resource ( n = 9 510 889) [ 39 ] and ∼1.0 million isolate
genomes from the proGenomes v3 database ( n = 18 937 140)
[ 54 ] using minced ( https:// github.com/ ctSkennerton/ minced ).
To reduce misbinning-derived contamination, additional fil-
tering was applied to spacers derived from MAGs: for each
contig containing a CRISPR locus, genes were predicted and
aligned using DIAMOND v0.9.19.120 [ 55 ] against the refer-
ence gene set of the representative species in SPIRE. If fewer
than 50% of genes matched any other MAG of the same
genus (excluding self), the spacer was discarded. Spacers de-
rived from contigs shorter than 10 kb were also excluded.
The resulting filtered spacers from SPIRE ( n = 5 702 293) and
proGenomes ( n = 18 937 140) were then aligned to the viral
genome sequences using BLASTN v2.5.0 [ 56 ], allowing only
perfect matches or alignments with a single mismatch or indel
under a > 95% AF. When a CRISPR spacer matched a viral
genome under these criteria, the host taxonomy was assigned
according to the GTDB-Tk classification v2.4.0 [ 57 ] based on
release 220 of GTDB [ 58 ]. 

Protein-coding genes were predicted from the identified vi-
ral genomes using prodigal-gv v2.11.0 [ 44 , 59 ], an algorithm
optimized for viral gene calling. Functional annotations were
then assigned using eggNOG-mapper v2.1.13 [ 60 ], MetaCer-
berus v1.4.0 [ 61 ], and RGI v5.2.1 [ 62 ]. These tools pro-
vided annotation across multiple databases and functional
categories, including eggNOG orthology [ 63 ], KEGG Orthol-
ogy [ 64 ], COG [ 65 ], PHROG [ 66 ], pVOG [ 67 ], Pfam [ 68 ],
TIGRFAM [ 69 ], dbCAN [ 70 ], and antibiotic resistance genes
[ 62 ]. To identify auxiliary metabolic genes (AMGs), we used
the previously curated set of KEGG orthology terms [ 71 ] and
calculated the proportion of genes assigned to AMGs rela-
tive to the total number of genes in each environment. These
proportions were then summarized by functional category for
metabolism according to the KEGG database. 

The lifestyle (lytic or temperate) of each phage genome was
predicted using BACPHLIP v0.9.3 [ 72 ], and those with a score
of > 0.8 were treated as temperate phages. Information on the
genetic code of each viral genome was obtained from geNo-
mad and used in downstream analyses. 

Results 

Overview of the viral genomes in VIRE 

The VIRE database primarily consists of 1 784 510 medium-
or high-quality viral genomes (defined as at least > 50%
completeness and < 10% contamination) reconstructed from
a total of 101 623 publicly available bulk and virome
(VLP-enriched) metagenomic datasets ( Supplementary Fig.
S1 ). Quality assessments by CheckV [ 22 ] classified these
as 384 035 complete, 417 105 high-quality, and 983 370
medium-quality genomes (Fig. 1 A). In addition to these
metagenome-derived sequences, VIRE includes 12 916 vi-
ral genomes downloaded from RefSeq/GenBank [ 49 , 50 ] 
(Fig. 1 A). Taxonomic classification with geNomad [ 44 ] re- 
vealed that the majority of sequences (87.2%) belong to Du- 
plodnaviria , a realm that encompasses tailed double-stranded 

DNA bacteriophages (Fig. 1 B). This is followed by Mon- 
odnaviria (9.2%), comprising single-stranded DNA (ssDNA) 
viruses; unclassified viruses (2.6%); and Varidnaviria (0.5%),
which includes giant viruses. At the order level, Petitvirales ,
Tubulavir ales , and Sanitavir ales ( Monodnaviria ) and Crassvi- 
r ales and Autogr aphivir ales ( Duplodnaviria ) were the most 
abundant ( Supplementary Fig. S2 ). Environmental annota- 
tions using the microntology [ 39 ] indicated that the majority 
of metagenome-derived viral genomes (n = 1410837, 78.5%) 
originate from host-associated environments, most of which 

were human gut samples (n = 950399, 52.9%) (Fig. 1 D).
These are followed by viruses derived from aquatic (n = 

336505, 18.7%), terrestrial (n = 115044, 6.4%), and an- 
thropogenic environments (n = 56644, 3.2%). The average 
genome size of these viruses was 38.2 kb (Fig. 1 C), and the 
largest metagenome-derived genome identified was an 836.2 

kb phage genome from a bovine sample, classified within Du- 
plodnaviria . This genome is among the largest phage genomes 
reported to date, comparable in size to previously described 

megaphages (e.g. 841 and 852 kb genomes) [ 73 , 74 ]. 
All viral genomes in VIRE were clustered into species- 

and genus-level groups, operationally defined as genome 
clusters sharing 95% and 70% ANI, following current 
ICTV recommendations [ 48 ]. This resulted in 706 281 non- 
redundant species-level and 527 020 genus-level representa- 
tive sequences. The largest species-level cluster corresponded 

to phiX174, a bacteriophage genome commonly used as a 
spike-in for Illumina sequencing quality control. This clus- 
ter was detected across diverse environments, including host- 
associated, aquatic, terrestrial, and anthropogenic samples,
suggesting that this control DNA sequence is often incom- 
pletely removed from metagenomic datasets before deposition 

into public archives [ 75 ]. 
Rarefaction analysis revealed that the number of species- 

and genus-level clusters continued to increase with addi- 
tional viral genomes across all environments (Fig. 1 E and 

Supplementary Fig. S3 ), consistent with previous studies [ 37 ].
To further quantify this, we calculated species discovery coef- 
ficients from the exponent of power laws fitted to rarefaction 

curves, as described previously [ 52 ]. Species discovery coeffi- 
cients typically range from 0 to 1, where values closer to 1 

indicate that rarefaction curves are far from saturation and 

additional sampling will continue to reveal new species, while 
values near 0 indicate that diversity has already been largely 
captured and the discovery of novel lineages is slowing down.
In our analyses, high coefficient values ( > 0.6) were observed 

for most environments (Fig. 1 D). In particular, hydrothermal 
vent, tundra, and human airways samples all showed coeffi- 
cients of ≥0.8, indicating that additional sampling effort is 
expected to discover new lineages at nearly unmitigated rates 
in these habitats. Other environments, such as agriculture, rhi- 
zosphere, rumen, plant host, hot spring, and air, also displayed 

high coefficients. The lowest coefficient was observed for the 
human gut and skin, likely reflecting the relatively high sam- 
pling effort and relatively low alpha diversity of their micro- 
bial community [ 76 ], respectively. Nevertheless, even in these 
environments, the coefficients remained above 0.5, suggesting 
that the rarefaction curves are still far from saturation. These 
results indicate that viral diversity across many environments 

https://github.com/ctSkennerton/minced
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
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emains substantially undersampled and highlight the need for
ontinued expansion of metagenomic sampling efforts. 

When we clustered the viral genomes from VIRE and
hose from IMG/VR v4 [ 37 ], the largest environmental viral
enome database to date, at 95% ANI, we identified a total of
 011 171 species-level clusters ( Supplementary Fig. S4 A). Of
hese, 56.1% were unique to VIRE. Compared with IMG/VR
lone, VIRE effectively doubled the number of known species-
evel clusters. Furthermore, when comparing the proportion
f viral genomes unique to VIRE across different environ-
ents, samples from rumen, coral reefs, built environments,

nd wastewater showed over 80% unique genomes not rep-
esented in IMG/VR ( Supplementary Fig. S4 B and C). In con-
rast, the human gut had the lowest proportion of unique
enomes among host-associated environments. However, even
n this well-studied environment, ∼42% of genomes were not
resent in IMG/VR. Other than the human gut environment,
etland, subsurface, and groundwater had lower proportions
f unique genomes ( Supplementary Fig. S4 B and C). These
ndings demonstrate that VIRE contains novel viral genomes
from a wide range of environments, including the extensively
studied human gut. 

Host annotation of phage genomes 

Host annotation for phages in VIRE was performed system-
atically using CRISPR spacer–based predictions, a method
recognized for its high specificity and low false-positive rate
[ 53 ]. CRISPR spacers were extracted from ∼1.2 million bacte-
rial/archaeal MAGs derived from the same set of metagenomic
samples used for viral genome detection in VIRE, as included
in the SPIRE resource [ 39 ], and an additional 1.0 million refer-
ence genomes from the proGenomes database [ 54 ], constitut-
ing the largest CRISPR spacer collection to date. These spac-
ers were aligned to viral genomes using stringent matching
criteria, resulting in host assignments for 46.8% of all viral
genomes in the VIRE database. The predicted host organ-
isms spanned 52 phyla, including both bacteria and archaea,
and encompassed a total of 2367 genera, as defined by the
GTDB taxonomy [ 58 ]. Among viruses with at least one pre-
dicted host, ∼40.7% were assigned to two or more host gen-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
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the panels show: the number of viral genomes predicted to infect each phylum, genome size distribution, predicted viral taxonomy from geNomad, 
environmental source of the metagenomic samples, predicted viral lifestyle, and proportion of viruses predicted to use non-standard genetic codes, 
assessed by geNomad. Prokaryotic hosts were predicted by mapping CRISPR spacers derived from SPIRE MAGs and proGenomes reference genomes 
to the viral genomes. Taxonomic assignments for the MAGs and reference genomes were based on GTDB-Tk. 
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era, potentially representing broad-host-range phages as re-
ported in recent studies [ 77 , 78 ]. When stratified by environ-
ment, host-associated samples yielded the highest proportion
of host-annotated viruses (57.4%), followed by those from
anthropogenic (13.7%), terrestrial (8.5%), and aquatic sam-
ples (3.8%). The assigned host taxonomy was largely consis-
tent with the bacterial taxonomies in the environment. For
example, among host-associated viruses, the most frequently
predicted hosts were Faecalibacterium spp., Bacteroides spp.,
and Phocaeicola spp., all of which are common and abun-
dant members of the human gut microbiome. Moreover, at
the phylum level, there was a strong positive correlation be-
tween the number of genomes/CRISPR spacers included in
SPIRE/proGenomes and the number of viral genomes assigned
to each phylum (Pearson’s r = 0.83 and 0.86, respectively,
Supplementary Fig. S5 ). 

When viral genomes were classified according to the pre-
dicted bacterial or archaeal host phyla, several distinctive pat-
terns were observed (Fig. 2 ). Among viruses predicted to infect
members of the Bacteroidota phylum, 4.0% were inferred to
use genetic code 15 instead of the standard bacterial genetic
code 11. Most of these viruses belonged to the Cr assvir ales or-
der, a dominant viral group in the human gut that infects Pre-
votella , Bacteroides, and Phocaeicola ( Supplementary Fig. S6 ).
This observation is consistent with previous reports showing
that some phages infecting these gut species have alternative
genetic codes [ 79 , 80 ]. Similarly, 7.5% of viruses predicted to
 

infect the Patescibacteria phylum (formerly known as CPR) 
were inferred to use genetic code 4. This finding is in line 
with a prior study suggesting that certain Patescibacteria lin- 
eages, such as the Absconditabacterales order, utilize alterna- 
tive genetic codes [ 81 ], indicating possible phage adaptation to 

host-specific translation systems. While the majority of host- 
assigned viruses were classified as either tailed bacteriophages 
(e.g. members of the Caudoviricetes order within Duplod- 
naviria ) or ssDNA viruses ( Monodnaviria ), an exception was 
observed for viruses predicted to infect Deinococcota, 35.9% 

of which were assigned to Varidnaviria , a viral realm that also 

includes eukaryotic viruses. This group included members of 
the non-tailed Sphaerolipoviridae family, which are known to 

infect Thermus species in the Deinococcota phylum and in- 
habit hot springs [ 82 ]. In addition, viruses predicted to infect 
the Deferribacterota phylum had a small genome size (median 

size = 5612 bp), due to a relatively high proportion of Mon- 
odnaviria (54.5%), which are ssDNA viruses with relatively 
small genomes ( ∼6 kb). These viruses were predicted to infect 
Mucispirillum spp. inhabiting the guts of rodents and other 
animals. 

Functional annotation of viral genes 

From ∼1.7 million viral genomes, a total of 89 469 781 

protein-coding genes were predicted. These genes were com- 
prehensively annotated using multiple functional databases,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
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ncluding eggNOG [ 63 ], KEGG [ 64 ], COG [ 65 ], PHROG
 66 ], pVOG [ 67 ], Pfam [ 68 ], TIGRFAM [ 69 ], dbCAN [ 70 ],
nd CARD [ 62 ]. Overall, 40.2% of these genes had at least
ne hit in any of these databases (Fig. 3 A). Among them,
ggNOG yielded the largest number of hits, with 51.4% of
ll viral genes having at least one eggNOG hit, including
7.0% assigned to functionally characterized groups. Con-
istent with this, eggNOG provided the highest number of
nique annotations among the databases ( Supplementary Fig.
7 ). The second-largest number of hits was obtained from
HROG, a database grouping distantly related viral gene
amilies, in which hallmark genes of tailed bacteriophages,
uch as integrase, terminase large subunit, and portal pro-
ein, were frequently identified [ 66 ] (Fig. 3 B). Additional func-
ional insights were obtained from the broader KEGG annota-
ions, where the most frequently assigned functions included
sDNA-binding proteins, DNA methyltransferases, and DNA
olymerases (Fig. 3 B). Furthermore, annotations based on the
bCAN database identified lysozymes, viral proteins known
o degrade bacterial cell membranes (Fig. 3 B). Given that
uch phage-derived endolysins have potential as alternatives
o antibiotics in antimicrobial therapies [ 83 , 84 ], such anno-
ations may offer valuable information for the rational design
f lysozyme-based therapeutics. 
Using CARD [ 62 ], we identified 618 genes annotated as an-

ibiotic resistance genes, the most abundant being the ACI-
 gene, which confers resistance to cephalosporins. Most
iruses carrying this gene had no predicted host, but previ-
us studies have reported that ACI-1 is encoded by prophages
n Negativicutes inhabiting the human gut [ 85 ]. Other de-
ected resistance genes included emrE (from Esc heric hia coli ),
nuC, and tet(W/N/W). Of the viruses carrying the resistance
enes, 97.2% originated from host-associated samples. Given
hat host-associated phages account for 78.5% of the VIRE
ataset, this represents a statistically significant enrichment
f resistance genes in viruses from host-associated environ-
ents (Fisher’s exact test, P < .01). Nevertheless, the fact

hat only 618 out of 89 million genes were annotated as
esistance genes is consistent with previous studies, which
ave shown that phages rarely encode antibiotic resistance
enes [ 86 ]. 

Phages encode AMGs, which modulate the metabolic func-
ions of their bacterial or archaeal hosts during infection [ 87 ,
8 ]. We examined the distribution of a previously curated
et of AMGs [ 71 ] in VIRE and found substantial variation
n both their abundance and types of AMGs across envi-
onments (Fig. 3 C). Aquatic viruses, for example, showed
 higher proportion of genes assigned as AMGs than those
rom other environments, spanning diverse functional cate-
ories, particularly cofactor and vitamin metabolism, carbo-
ydrate metabolism, and glycan metabolism. Whether the en-
ichment of AMGs in the aquatic environment simply re-
ects the greater number of studies conducted in aquatic sys-
ems remains to be clarified. In contrast, viruses from host-
ssociated samples, especially those from the human gut, oral
avity, and skin, were enriched in AMGs related to amino
cid metabolism and energy metabolism, but had lower fre-
uencies of AMGs associated with carbohydrate and gly-
an metabolism. Terrestrial viruses from subsurface, tundra,
nd wetland environments were comparatively enriched in
MGs involved in secondary metabolite biosynthesis and ter-
enoid/polyketide metabolism relative to the host-associated
iruses. These findings suggest that virus–host interactions
exhibit environment-specific metabolic signatures, reflecting
ecological adaptation between viruses and microbial commu-
nities in distinct habitats. 

Seamless integration with other microbiome 

resources 

The metagenomic samples in VIRE use identifiers consistent
with those used in our previously developed resources, SPIRE
( https://spire.embl.de ) [ 39 ] and Metalog ( https://metalog.
embl.de ) [ 40 ], enabling seamless cross-referencing across the
resources. SPIRE is a large-scale microbial genome resource
consisting of ∼1 million MAGs, allowing users to compare
viral genomes and microbial genomes derived from the same
metagenomic samples. Metalog is a manually curated meta-
data repository for metagenomic studies, providing environ-
mental descriptors (including geographic coordinates) ex-
tracted from original publications. For human gut samples,
Metalog additionally provides host demographic information
(e.g. age, sex, geographic origin) and detailed clinical meta-
data such as disease status and medication use. Additionally,
taxonomic profiles of the samples based on mOTUs [ 89 ] and
MetaPhlAn [ 90 ] are also available. By linking viral genomes,
microbial MAGs, microbiome taxonomic profiles, and envi-
ronmental or clinical metadata, VIRE enables large-scale, inte-
grative analyses of microbial ecosystems with unprecedented
depth and context. 

Web interface and accessibility 

VIRE is publicly accessible at vire.embl.de, where users can
browse and download viral genome sequences along with
their associated metadata. For each viral genome, the inter-
face provides access to the genome sequence, key quality met-
rics (e.g. geNomad scores, CheckV completeness, and contam-
ination), predicted genes, functional annotations, host predic-
tions, species- and genus-level cluster assignments, and cor-
responding metagenome and study metadata. Data can be
explored and downloaded by environmental category (host-
associated, aquatic, terrestrial, engineered, or human gut) ac-
cording to the microntology ontology, or by individual study,
enabling flexible access tailored to diverse research needs.
Community contributions, feature requests, and bug reports
are welcome via https://vire.embl.de/contribute. 

Future directions 

As the volume of publicly available metagenomic data con-
tinues to expand, VIRE will be regularly updated to incorpo-
rate newly identified viral genomes. Planned developments in-
clude refining viral detection algorithms and gene annotation
pipelines to improve the identification of novel viruses and
functional elements. Future releases will also integrate long-
read metagenomic and metatranscriptomic datasets, broad-
ening the scope to encompass non-tailed phages and RNA
viruses. Continued integration with companion microbiome
resources such as SPIRE and Metalog will further facilitate
comprehensive exploration of viral and microbial ecology
across ecosystems and host-associated environments. Over
time, the web platform will be enhanced to support more ad-
vanced query and analysis capabilities, making VIRE an in-
creasingly powerful tool for the virome research community. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1225#supplementary-data
https://spire.embl.de
https://metalog.embl.de
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Figure 3. Viral genes and functional annotations. ( A ) Pie chart showing the proportion of viral genes annotated by each functional database. Blue color 
represents the proportion of genes matching known functions, while green indicates hits to hypothetical or uncharacterized proteins. The numerical 
values indicate the proportion of genes assigned to known functions. ( B ) Bar plot representing the number of functional annotations derived from KEGG, 
PHR O G, and dbCAN databases. The top 20 functions from KEGG and the top 10 functions from PHROG and dbCAN are displayed. ( C ) Heatmap 
illustrating the distribution of AMGs across environments. Curated KEGG orthology terms [ 71 ]corresponding to AMGs were detected in viral genomes, 
and the percentage of AMGs in each category was calculated. Colors represent the standardized value (z-score) of the proportion of each AMG relative 
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iscussion 

IRE is a large-scale viral genome resource constructed from
ver 100 000 publicly available metagenomes using a consis-
ent and standardized pipeline. The underlying metagenomes
nclude a wide range of environments, offering a comprehen-
ive resource for investigating viral diversity on a planetary
cale. Each viral genome in VIRE is accompanied by compre-
ensive annotations, including genome quality metrics, tax-
nomic classification, predicted host, and gene-level func-
ional annotations, all generated using state-of-the-art tools
nd databases. These features make VIRE a powerful plat-
orm for comparative viromics, host–virus interaction, and
he exploration of viral functions across diverse ecosystems.
 key strength of VIRE is its seamless integration with other
etagenome-based resources, such as SPIRE and Metalog.
his interoperability allows users to link viral genomes with
AGs and curated environmental or clinical metadata from

he same samples, enabling multi-dimensional analyses of mi-
robial communities in their ecological and host contexts. We
nticipate that VIRE will serve as a foundational resource for
dvancing our understanding of viral diversity, evolution, and
cological roles and will remain a critical resource for the
roader microbiome research community. 
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