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ABSTRACT 

Lifestyle factors influence both gut microbiome composition and host metabolism, yet 
their combined and mediating effects on host phenotypes remain poorly characterized 
in cardiometabolic populations. In 1,643 participants from the MetaCardis study, we 
developed a composite lifestyle score (QASD: dietary quality, physical activity, smoking, 
and diet diversity) that outperformed individual lifestyle variables in explaining micro-
bial gene richness and exhibited a significant impact on the gut microbiome composi-
tion. While bidirectional pathways linking the QASD score, host phenotypes, and 
microbiome composition were assessed, causal inference-based mediation analyses 
indicated stronger effects when the microbiome was modeled as the mediator variable, 
particularly in relation to the insulin resistance-associated profile. Microbiome gene 
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richness emerged as a key mediator explaining 27.8% of QASD score’s effect on the 
insulin resistance marker (HOMA-IR), while no significant mediation was observed on 
BMI. Extended mediation analyses on microbial species and serum metabolomics 
deconfounded for drug use and clinical profiles identified 47 mediations where micro-
bial taxa mediated more than 20% of the effect of the QASD score on serum metabo-
lites associated with insulin resistance. Notably, several Faecalibacterium lineages 
enriched in individuals with high QASD score played a significant mediatory role in 
increasing the serum biomarkers of microbiome diversity (as cinnamoylglycine or 3- 
phenylpropionate). Conversely, elevated levels of secondary bile acids in individuals 
with low QASD scores were strongly mediated by high levels of Clostridium bolteae. 
These findings highlight distinct and clinically relevant microbiome pathways linking 
lifestyle behaviors to cardiometabolic risks. 

One sentence summary: 
The gut microbiome mediates the impact of diet quality and diversity, physical 

activity and smoking status – combined in a composite lifestyle score – on cardiometa-
bolic phenotypes. 

Introduction 

Various medical conditions underpinned by chronic systemic inflammation and insulin resistance, from 
type 2 diabetes and obesity1-3 to cardiovascular diseases,4 have been consistently associated with alterations 
in the gut microbiota. In these diseases, an imbalance in microbial populations is characterized by reduced 
gut microbial gene richness (GMGR) and diversity, along with significant changes in microbial composi-
tion and function.5  

Reports regularly describe the importance of a wide array of lifestyle factors in the onset and 
progression of cardiometabolic diseases, also suggesting a potential mediating role of the gut microbiome 
in these relationships.6,7 However, while many studies have reported associations in human populations, 
only a few have sought to characterize microbiome features that may mechanistically mediate the effects of 
lifestyle patterns on disease pathophysiology and phenotypes. Among modifiable lifestyle factors, dietary 
patterns, physical activity, sedentary behavior, and smoking are well-established contributors to cardio-
metabolic health, that may act either directly or through the modification of gut microbial composition 
and function. 8,9 

Dietary habits are commonly evaluated based on the intake of specific food items, considering their 
protective or harmful effects.10 To capture dietary patterns in relation to health outcomes, several scoring 
systems have been developed.10 Among these, the alternative healthy eating index (AHEI) and the dietary 
approaches to stop hypertension (DASH) score are widely used to assess diet quality and have been linked 
to reduced cardiovascular risks.11 On the other hand, the alternative dietary inflammatory index (aDII),12 

capture the inflammatory potential of the diet. Few studies have systematically examined the relationship 
between these score-based dietary patterns and the gut microbiome composition and potential interactions 
with cardiometabolic phenotypes.13-15  

Another component of food consumption is diet diversity (commonly defined by the number of 
distinct food groups) that is widely recommended to ensure nutrient adequacy.16 However, dietary 
diversity is not necessarily indicative of overall diet quality.17 Commonly used dietary diversity scores 
rarely account for the distribution of food items within each food groups, referred to here as dietary 
variety.17 As such, ecological diversity indices can address these aspects, providing a framework for 
evaluating the interplay between dietary patterns, the gut microbiome18 and clinical phenotypes. 
Previous studies have focused on healthy or elderly populations. For instance, one study reported a 
positive association between dietary diversity and longitudinal microbial stability in 34 healthy individuals 
but found no relationship with microbiome richness.19 The PREDICT 1 study demonstrated that fecal 
microbiome diversity was associated with habitual dietary intake and diversity in the general population.7 

Another study in 445 elderly subjects employed a diversity score similar to the Simpson index, linking a 
more diverse diet to a more even distribution of bacterial groups taxa.20 However, few studies have 
examined how dietary diversity, independent of dietary quality, may be related to the gut microbiome 
composition and metabolic health across varying degrees of cardiometabolic disease severity.7,19,20 
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Other lifestyle factors are important for cardiometabolic health. For instance, the Global Burden of 
Disease Study report (2017) highlights the substantial health risks associated not only with inadequate fruit 
and vegetable consumption,21 but also with alcohol intake, smoking, and insufficient physical activity.21 

Alcohol consumption has been shown to differentially affect the gut microbiome composition depending 
on the presence of underlying disease.7,22,23 Similarly, physical activity24 and smoking status25 have been 
shown to significantly modify the gut microbiome composition. This suggests that integrative lifestyle 
indices accounting for these factors should be of interest when investigating the microbiome composition 
and its links with host phenotypes. However, no study to date has examined the combined effects of 
physical activity and smoking status alongside dietary indices,26 in relation to the gut microbiome and 
metabolic health.27,28 In particular, it remains to be identified whether a composite lifestyle score 
combining these lifestyle factors would better capture these associations with the microbiome than 
individual factors and whether specific microbiome features may partly mediate the effect of lifestyle 
factors on metabolic phenotypes. 

We addressed these aspects in 1,643 participants from the European MetaCardis population encom-
passing a broad spectrum of cardiometabolic phenotypes and developed a composite lifestyle score, named 
the QASD, that includes diet quality, physical activity, smoking status, and dietary diversity, to examine its 
associations with metabolic health phenotypes, notably insulin resistance markers, the serum metabolome, 
and the fecal microbiome composition in comparison with individual lifestyle features. In addition, we 
performed bidirectional mediation analyses, providing novel insights into the complex, interrelated 
pathways linking lifestyle behaviors, the gut microbiome, and cardiometabolic risks. 

Materials and methods 

Study cohort and sample acquisition 

This study is based on the European MetaCardis cohort, which was originally designed to investigate the 
relationships between different stages of disease and gut microbiome variation. The cross-sectional 
MetaCardis cohort included 2,214 participants, covering a wide range of metabolic and cardiac pheno-
types. Participants were recruited between 2013 and 2015 from Denmark, Germany, and France. Details 
regarding the study cohort, including protocol information, exclusion criteria, group definitions, bio-
chemical analyses, and the collection of anthropometric and clinical data, have been extensively described 
in previous publications.2,29,30 

For the present study, we focused on a subset of 1,643 individuals, including healthy, normal-weight 
participants (BMI <25 kg/m²), as well as individuals with various metabolic conditions, such as type 2 diabetes 
(T2D), metabolic syndrome (MS), obesity and cardiovascular disease. This subset is summarized in the flow chart 
in Supplementary Figure 1 and detailed in Supplementary Table S1. The study protocol was approved by the 
Ethics Committees of the Medical Faculty at the University of Leipzig, Germany (application number: 047-13- 
28012013), the Capital Region of Denmark (H-3-2013-145), and the ‘Comité de Protection des Personnes’ (CPP) 
Ile-de-France III, France (no. IDRCB2013-A00189-36). The study was registered at https://clinicaltrials.gov/ 
(NCT02059538). The cohort design adhered to ethical regulations, including the Declaration of Helsinki and 
European privacy laws. All participants provided written informed consent. 

As a replication cohort for individuals with overweight and obesity, we used data from the GutInside 
study (see Supplementary Table S2) described in.31 Participants were recruited in France from September 
2018 to January 2020 across various regions and included 433 individuals with overweight or obesity 
(BMI ≥ 25 kg/m²). Although the GutInside participants were involved in a dietary intervention program, 
only baseline data were analyzed for this study. Similar questionnaires and food records were used to 
evaluate lifestyle factors.  

Clinical and anthropometric variables and definition of study groups 

Study groups were defined according to international disease criteria. Overweight and obesity were 
classified using the WHO criteria, with overweight defined as BMI ≥25 kg/m² and obesity defined as 
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BMI ≥30 kg/m². MS was determined based on the International Diabetes Federation’s 2005 Consensus 
Worldwide Definition (http://www.idf.org/metabolic-syndrome), which requires a waist circumfer-
ence >94 cm in men and >80 cm in women, along with any two of the following four factors: (i) 
triglycerides ≥1.7 mmol/L or treatment for lipid abnormalities (e.g., statins, fibrates, or ezetimibe); (ii) 
high-density lipoprotein (HDL) cholesterol <1.03 mmol/L in men and <1.29 mmol/L in women, or treat-
ment for lipid abnormalities; (iii) blood pressure (BP) ≥130/85 mmHg, or treatment with antihypertensive 
medication; and (iv) fasting plasma glucose ≥5.6 mmol/L or a diagnosis of T2D. T2D was defined using the 
American Diabetes Association (ADA) criteria: fasting glucose >6.9 mmol/L, 2-h values during an oral 
glucose tolerance test >11 mmol/L, HbA1c (glycated hemoglobin) ≥6.5%, or the use of anti-diabetic 
medication (American Diabetes Association, 2018). Hypertension status was defined according to the 
American College of Cardiology and American Heart Association guidelines.32 

For obesity, participants were categorized into two groups: Group 2A: individuals with Grade II obesity 
(BMI ≥35 kg/m²) without T2D or previous cardiovascular conditions. Group 2B: Predominantly indivi-
duals with Grade III obesity (BMI ≥40 kg/m²) eligible for bariatric surgery. T2D was not an exclusion 
criterion, and participants generally exhibited more severe metabolic impairments compared to Group 2A. 
For descriptive purposes, Groups 2A and 2B were combined in this study. Participants with heart failure 
were defined according to guidelines from the American College of Cardiology, American Heart 
Association, and Heart Failure Society of America.33 The group with coronary heart disease included 
patients with first events of acute coronary syndromes, chronic coronary artery disease with or without 
heart failure (defined as left ventricular ejection fraction ≥45% or <45%, respectively). Participants with 
heart failure due to non-coronary causes were excluded. 

Anthropometric measurements, including weight, height and waist circumference, were obtained 
during clinical visits using standardized procedures and calibrated equipment. Body fat mass and fat- 
free mass were assessed by bioelectrical impedance analysis. Systolic and diastolic blood pressure were 
measured using a mercury sphygmomanometer, with three readings taken on each arm; the average of the 
last two measurements from the right arm was used for analysis. A detailed record of prescribed 
medications and the patient’s medical history was collected, with drug treatments categorized according 
to their molecular class, as described previously.29 

Dietary intake and lifestyle data assessment 

General questionnaire and database 

In the MetaCardis EU project, a clearly defined objective was to study the interplay between lifestyle, diet, 
the fecal metagenome and host metabolic conditions. Dietary data for the MetaCardis population were 
collected using a web-based, validated food-frequency questionnaire (FFQ) tailored to the cultural habits 
of each recruitment country. The MetaCardis FFQ was adapted from the validated European Prospective 
Investigation of Cancer (EPIC)-Norfolk FFQ and incorporated elements from several other European 
FFQs. The French version of the FFQ version contains 159 food and beverage items, the German FFQ 
contains 143 items, and the Danish FFQ contains 153 items. The FFQ asked participants to report the 
frequency of consumption of each food item over the last 12 months, using a 9-level scale, ranging from 
“never or less than once a month” to “6 times or more per day”. For each food item, a generic portion size 
was specified. Thus, initial responses to the FFQ were frequency choices indicating consumption units per 
month, week, or day for each food items. These frequencies were converted to daily intake values and then 
translated into food group intakes (in g/day) and nutrient intakes (in g/day, mg/day, or mcg/day) using 
data on portion sizes (i.e., grams per portion) and nutrient contents (i.e., nutrients per portion) sourced 
from nationally relevant food composition databases. A validation study comparing the FFQ against 
repeated 24-h dietary records among 324 French MetaCardis participants showed good validity for 
micronutrient intake.34 

Several compounds and nutrients have been added to the original composition table, allowing for more 
precise analysis of specific compounds, such as subclasses and totals of polyphenols (using the updated 
Phenol-Explorer table35) and nutrients/metabolites from updated databases, including the USDA (https:// 
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fdc.nal.usda.gov/), FooDB (https://foodb.ca/), and the Danish National Food Database (DTU Food 
Database: https://frida.fooddata.dk/) for biotin intake3. Each nutrient or metabolite of interest was 
carefully integrated into a consortium internal composition table through dietary matching and detailed 
recipe decomposition, which was performed by dietitians and experts. The basal metabolic rate (BMR) for 
each participant was estimated using the Harris and Benedict equation. Participants who significantly 
under- or overreported energy intake (defined as <0.5 BMR or >3.5 BMR) were excluded from the dietary 
analysis (less than 10% of the subjects presented nutritional data).  

Physical activity and sedentary behavior data were collected using the Recent Physical Activity 
Questionnaire (RPAQ).33 The RPAQ assesses habitual physical activity over the past month across four 
domains: home, work, travel, and leisure time. Physical activity assessment using the RPAQ has been 
validated against energy expenditure measurements using the doubly-labeled water method.36 The physical 
activity data were computed as hours per week and as the metabolic equivalent of task (MET)-hour per 
week, using a published compendium of physical activities and their corresponding MET values. One MET 
represents the energy expended at rest, equivalent to 3.5 ml/min/kg of oxygen consumption.37 Sedentary 
behavior was assessed through leisure screen time, which represents the sum of time spent watching TV 
and using the computer during leisure time, expressed in hours/week. 

Smoking status data were obtained through multiple questions regarding smoking habits, including the 
subject’s smoking status (non-smoker, former smoker, passive smoker, current smoker), the number of 
cigarettes smoked, and the date of cessation or resumption of smoking. For the QASD score calculations, 
smoking status was recoded into two categories (non-smoker/smoker), as shown in Supplementary 
Table S1. The initial smoking status classification was cross-checked with quantitative data on cigarette 
consumption, start/stop dates, and passive smoking exposure to confirm the final categorization (non- 
smoker/smoker). 

Food groups and nutrient content 

Food items from country-specific FFQ were combined into a list of 160 food items. Food group 
consumption was calculated by organizing the 160 food items into groups of nutritional interest. The 
original 22 groups in the MetaCardis study were further divided into 42 subgroups (as shown in 
Supplementary Table S3, diversity 1 column). The dietary diversity scores were based on these 42 
subgroups, following specific criteria. For sensitivity analysis, dietary diversity scores were also constructed 
by excluding “liquid” foods, such as hot drinks, fruit juices, sugary drinks, alcoholic beverages, and milk, as 
their quantities could disproportionately affect the diversity scores based on consumption uniformity 
(Simpson index). 

Dietary “inflammatory potential” of the diet 

The “inflammatory potential” of the diet was assessed using the alternative dietary inflammatory index 
(aDII), an adapted version of the original dietary inflammatory index (DII) developed by Cavicchia et al.12 

and based on the methodology outlined by van Woudenbergh et al.38 The aDII includes 34 food items, 
standardized after adjusting for energy intake using the residual method developed by Willett et al.39 to 
minimize variations in dietary intake due to differences in physical activity, body size, and metabolic 
efficiency. Each food item's value was then multiplied by a literature-based inflammatory weight that 
reflected the pro/anti-inflammatory potential of the food item,12 and the resulting values were summed to 
calculate the aDII score. Higher aDII scores indicate a more proinflammatory diet. 

Dietary quality scores 

The alternative healthy eating index (AHEI) and dietary approaches to stop hypertension (DASH) scores 
were computed to evaluate overall dietary quality, and two a priori scores, taking into account the existing 
correlations between the different components of the diet developed in order to overcome the limitations 
linked to approaches focusing only on food or nutrient groups40 and based on foods and nutrients 
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predictive of chronic disease risk.41,42 As a measure of healthy US-style eating, the AHEI-2010 assigns 0–10 
points to each of 11 dietary components based on the portion size.40,41 The DASH score contains 8 
components, each of which receives 1–5 points according to its consumption quintile.43 

Dietary diversity and variety scores: Dietary diversity and variety scores were constructed based on 
different food group categorizations (42 groups aggregated, with or without “liquid” foods, as shown in 
Supplementary Table S3) and two different estimation methods: count-based and evenness-based. 

Count-based scores: We employed count-based measures of diversity, which record the number of distinct 
food items and groups consumed, without considering the quantities of each consumed food. Simple count- 
based scores were calculated by assigning 0 points for each food group (for diversity scores) or individual food 
item (for variety scores) if the participant did not consume the food (consumption = 0 grams) and 1 point if the 
food was consumed (consumption > 0 grams). Thus, the total diet diversity score ranged from 0 to 42, based on 
the initial food groups derived from the FFQ (Supplementary Table S3 for the initial 42 groups). While count 
measures simply tally different food groups and subgroups, they do not account for the distribution of food 
quantities. Previous research has been limited by these count-based measures and inconsistencies in the 
number and types of food groups considered.17 To address these limitations, we conducted sensitivity analyses, 
systematically varying the number of food groups and excluding liquid foods from the diet. 

Evenness-based scores: We also used diversity measures that account for both the number and the 
distribution of different food items, such as the Berry index, also known as the Simpson index,44 which is 
commonly applied to assess metagenomic or ecological diversity. This index increases when food items are 
consumed more equally rather than when they are concentrated in fewer groups. Simpson-based scores are 
calculated by treating food groups (for diversity) or individual foods within a group (for variety) as 
different species, similar to how ecological indices measure species diversity in an environment. The 
Simpson index considers both the number of “species” (food groups) present and their relative abundance: 

PSimpson Index = 1
i

R

i
=1

2

where R represents the richness or number of food groups considered, and Pi
2 is the relative abundance of 

each group (the share of food group i in the total amount consumed). Subtracting this score from 1 results 
in an index ranging from 0 to 1, where 0 indicates minimal diversity and 1 represents maximal diversity 
(equal consumption of all considered items). 

To address inconsistencies in the number and types of foods or food groups, we performed sensitivity 
analyses, varying the groups included in the calculations. Specifically, for total diet diversity, we created 
scores that excluded liquid foods (see Supplementary Table S3 for additional food groups excluding 
beverages and milk). We calculated the healthy food diversity (HFD) score developed by Drescher et al.,45 

which serves as an indicator of healthy food diversity, specifically focusing on the diversity of health- 
promoting products. We also derived a normalized composite dietary diversity and variety score,46,47 

which combines both diversity and variety measures (simple counts), normalized on a scale of 0–100. 
These scores capture various aspects of dietary diversity and variety. Some scores reflect the entire diet 

(referred to as “diversity all diet”), while others focus on specific dietary groups or items (labeled as “variety”). 
We used diversity and variety scores based on simple counts within consumption groups (labeled as “count”) 
and scores that account for the evenness of consumption within dietary groups (labeled as “Simpson”). 

Quality activity smoking diversity (QASD) lifestyle score construction: a new lifestyle score, the 
QASD, was developed to incorporate diet quality, total physical activity, smoking status, and dietary 
diversity. Lifestyle components on continuous scales were categorized into three levels to enhance 
interpretability, harmonize variables measured on different scales (e.g., diet quality-diversity, physical 
activity), while for smoking status, a value was assigned based on binary classification. This approach 
ensures robustness across cohorts with heterogeneous distributions, which is consistent with approaches 
used in other lifestyle indices (e.g., the Healthy Lifestyle Index, Life’s Simple 7, Mediterranean Diet 
Score41,48,49). The values of the four individual scores used to build the QASD are given below.  

•  Diet quality (AHEI): 0 points for the low tertile, 1 point for the medium tertile, and 2 points for the 
high tertile. 
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•  Dietary diversity (Simpson index, excluding beverages): 0 points for the low tertile, 1 point for the 
medium tertile, and 2 points for the high tertile.  

•  Total physical activity (MET-h.week-1): 0 points for the low tertile, 1 point for the medium tertile, and 
2 points for the high tertile.  

• Smoking status: 0 points for smokers and 1 point for non-smokers or ancient smokers. 

The QASD score was computed by taking the unweighted sum of these four scores. The use of the 
unweighted sum of the subscores is justified because of its simplicity, neutrality, and robustness. In clinical 
settings, where scores based on variables often represent independent dimensions of patient status (e.g., 
physiological metrics, diagnostic findings, or treatment responses), the unweighted sum avoids introduc-
ing biases from arbitrary or uncertain weightings. This approach ensures equal contribution from each 
score, maintaining fairness when there is no clear evidence to prioritize one over the others, which is the 
case here. It also minimizes the risk of errors associated with miscalibrated weightings, which is critical in 
medical decision-making.50 Furthermore, the unweighted sum is transparent, easy to interpret, and widely 
applicable, making it appropriate for clinical contexts where clarity and comparability are essential. This 
straightforward aggregation method used to construct the QASD score aligns with evidence-based 
practices and is frequently used in composite medical indices and scoring systems.51 The QASD score 
ranges from 0 to 7. To address low numbers in some categories during stratification, we grouped the scores 
into five categories: “0–1–2,” “3,” “4,” “5,” and “6–7” for Figures 1, 3, and Supplementary Figures 2–5, and 
into three categories: “0–1–2–3,” “4,” and “5–6–7” for Figures 2, 4, 5, 6, and Supplementary Figures 6–8. 

Extraction of fecal genomic DNA and gut microbiota sequencing in MetaCardis cohort 

Details of gut microbiota sequencing and taxonomic and functional profiling in the MetaCardis cohort has 
been extensively described in previous publications.2,29,30 Briefly, DNA from fecal samples was extracted 
following the International Human Microbiome Standards (IHMS) guidelines (SOP 07 V2 H). Shotgun 
sequencing was performed with ion-proton technology (Thermo Fisher Scientific; average 23.3 ± 4.0 
million (mean ± SD) 150-bp single-end reads per sample). Alien Trimmer (v0.2.4)52 was used for quality 
filtering of raw sequencing reads, and non-bacterial contaminants of human and food origin were removed 
by aligning cleaned reads vs. human genome (RCh37-p10) and the genomes of Bos taurus and 
Arabidopsis thaliana (97% identity threshold). Filtered high-quality reads were aligned to the 9.9- 
million-gene catalogue of the human gut microbiome53using Bowtie2 (v.2.3.4; 95% identity threshold),54 

from which a gene abundance table was obtained using METEOR v3.2 software55 (https://forgemia.inra.fr/ 
metagenopolis/meteor). The read counts were downsized to 10 million reads per sample and normalized 
by the gene size and the number of total mapped reads reported in frequency using the R package 
MetaOMineR.56 From the downsized and normalized gene abundance table, functional and phylogenetic 
quantitative profiles were generated within the MOCAT2 framework.57 The abundance of 1435 metage-
nomic species (MGS; co-abundant gene groups with more than 500 genes corresponding to microbial 
species defined from 1,267 human gut metagenomes used to construct the 9.9-million-gene catalog as 
previously described58) were estimated as the mean abundance of the 50 genes defining a robust centroid 
of the cluster.58 The taxonomic annotation of the MGS was carried out by BLASTN of MGS genes against 
the NCBI database (November 2016 version), with species-level classification assigned when more than 
50% of the genes matched the same reference genome with at least 95% sequence identity and 90% 
coverage. The GMGR was estimated from the average gene count across 10 rarefaction replicates. 

Extraction of fecal genomic DNA and gut microbiota sequencing in GutInside cohort 

Gut microbiome sequencing of fecal samples from 433 individuals of the GutInside study31 was performed by 
GeneWiz (https://www.genewiz.com/) using Illumina HiSeq platform, resulting in 23.17 ± 5.1 million read 
pairs (mean ± std. deviation) per sample. Raw reads were processed with NGLess59 for quality trimming 
(minimum read quality = 25; minimum read length = 40), host contaminant removal vs. reference human 
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genome (min. identity = 90%, min. match size = 45), alignment of filtered reads over the 9.9 million gene 
catalogue (min. identity = 95%, min. match size = 45), and generation of a gene abundance table with the dist1 
metric of NGLess, equivalent to the counting strategy described above for the MetaCardis cohort (first, the 
genome abundances are computed from unique mapped reads and then are corrected by the multiple mapped 
reads weighted by the coverage of unique mapped reads). The gene abundance table was processed for 
rarefaction and FPKM normalization with the MetaOMineR56 R package. The raw gene abundance table was 
rarefied to 10 million reads per sample, and the rarefied gene abundance table was normalized according to the 
FPKM strategy, from which MGS abundances were computed as in the MetaCardis cohort (mean abundance 
of the 50 genes defining a robust centroid of the cluster if more than 10% of these genes yielded positive 
signals). From the NGLess-filtered reads, genus-level abundance profiles in the mOTU space were generated 
with mOTU v2.6.1,60 from which enterotype classifications was performed after rarefy to 4000 counts per 
sample using the Dirichlet Multinomial Mixture (DMM) method61 and implemented in the Dirichlet 
Multinomial R package (Dirichlet-Multinomial Mixture Model Machine Learning for Microbiome Data. R 
package version 1.28.0). The minimum Laplace metric was used as criteria to select the best stratification of the 
cohort,61 which was at 4 discrete microbiome compositions that corresponded to the Rum, Prev, Bact1 and 
Bact2 enterotypes described in the Metacardis cohort.62 

Analyses of microbial diversity and community structure 

The estimation of the explanatory power of nutritional features regarding relative microbiome profiles derived 
from MGS abundance data was performed using univariate and multi-variate stepwise distance-based redun-
dancy analyses (dbRDA) as implemented in the R package vegan (Community Ecology Package. R package 
v.2.2-1).63 Redundance filtering of collinear lifestyle variables was performed prior to these analyses with the R 
package FMradio;64 threshold = 0.9 on the Spearman pairwise correlation matrix). The interindividual variation 
in the microbiome was visualized by principal coordinate analysis using Bray–Curtis dissimilarity on the basis of 
the relative abundance matrix derived from MGS abundance data. The environmental fit of nutritional covariates 
with a significant impact on microbiome composition based on dbRDA analyses over PCoA ordination from the 
Bray‒Curtis inter-sample dissimilarity matrix was computed with the envfit function of vegan R package. 
Associations of nutritional variables with enterotype status were tested with logistic regression analyses adjusted 
for age, gender, center, BMI, and the intake of metformin, statins and PPI. 

Metabolomic profiling 

We used untargeted UPLC–MS data generated by Metabolon in serum samples and NMR data in urine 
samples. Full details of sample processing and generation of metabolomic profiles are available in our 
previous report.30 

Drug deconfounding analysis 

The deconfounding pipeline was employed to determine the extent to which observed differences in 
microbiome and metabolome feature abundances between pairwise levels of the QASD score (high vs. 
medium, high vs. low, medium vs. low; low = QASD 1, 2, 3; medium = 4; high = 5, 6, 7) are influenced by 
confounding factors – such as treatment or risk variables – rather than being inherent characteristics of the 
specific phenotype itself. We used a post hoc filtering approach implemented in the R package 
metadeconfoundR (version 0.1.8; https://github.com/TillBirkner/metadeconfoundR or Zenodo), devel-
oped within the MetaCardis consortium.29 We followed the procedure described in.30 Medication status 
(statin, metformin, and PPI intake, all treated as binary variables) and the MetaCardis clinical group were 
considered as covariates, and the country of recruitment was included as a random effect. The analysis was 
conducted on metagenomic (MGS, mOTU, Gut Metabolic Modules (GMM)) and metabolomic features 
(serum, urine) present in at least 20% of the samples. For metagenomic features, abundances were 
corrected for bacterial cell count by multiplying by a normalization factor calculated as the bacterial 
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cell count of the sample divided by the mean bacterial cell count across the entire dataset. Features with 
strictly deconfounded associations (SD), meaning that the QASD score adds significant explanatory power 
vs. a model with only the covariates (likelihood ratio test p-value < 0.05) and where the confidence interval 
does not include zero, were retained for further analyses. 

Statistical analyses 

Data management and statistical analyses were performed using SAS version 9.3 and R (R statistical software, 
Vienna, Austria). The significance levels used were p <0.05, FDR <0.01, and p for interaction <0.1. 

Several adjustment strategies were applied throughout the analyses. For analyses related to gut micro-
biome gene richness (GMGR), a normally distributed variable, we conducted sensitivity analyses consid-
ering potential confounders identified in previous MetaCardis consortium studies.2,3,29,30 These 
confounders included age, gender, recruitment center, antibiotic use, metformin and statin intake, and 
BMI. To isolate the independent effects of nutritional quality, the models were adjusted for energy intake 
(kcal) and the AHEI score, which is consistent with standard practices for dietary intake analysis. For 
specific omics features, we used the analysis pipeline developed and published in the MetaCardis study to 
ensure comparability with other studies (see the previous Drug Deconfounding Analysis section). 

Mediation analysis 

Mediation analysis was used to infer causal mediation effects between metagenomic species (MGS), serum 
metabolites, and pairwise levels of the QASD score (high vs. low, high vs. medium, medium vs. low; low = QASD 
1, 2, 3; medium = 4; High = 5, 6, 7). To reduce the number of tests, we focused on MGS and metabolites with 
strictly deconfounded status from the drug deconfounding pipeline, which exhibited an absolute effect size greater 
than 0.1 on Cliff’s delta between pairwise levels of the QASD score (as shown in Figure 4). 

In the first step, pairwise associations between metabolites and MGS were tested individually using 
linear regression analyses, adjusted for country of origin, age, sex, and intake of metformin, statins, and 
proton pump inhibitors (PPI). Only significant pairs (FDR < 0.05) were retained for further mediation 
analysis. MGS abundances were normalized using the empirical normal quantile transformation method65 

to ensure normality before analysis as proposed in.66  

In the second step, we applied a similar regression framework, with the same adjustments, to identify 
significant mediations under two potential hypotheses regarding the direction of mediation, using the mediate 
function from the mediation R package (version 4.5.0).67 The first hypothesis examined the role of MGS as 
mediators in the relationship between the QASD score and the host's metabolomic profile (Direction 1, 
Figure 5A). The second hypothesis explored whether the relationship between the QASD score and the host 
metabolome (as a mediator) could subsequently influence the metagenomic landscape (Direction 2 in 
Figure 5A). Significant mediations were defined as those with an FDR < 0.05 for the average causal mediation 
effect (ACME), average direct effect (ADE), and total effect. Similar analyses were conducted to infer causal 
mediation effects between the levels of the QASD score, microbial gene richness, and clinical status of 
individuals, including measures of body mass (BMI) and metabolic status (glycated hemoglobin, HOMA-IR). 

To further integrate insulin resistance profiles in the results of mediation analyses between the QASD, 
serum metabolites and MGS, we filtered significant mediations by retaining those where both the MGS and 
the serum metabolite were significantly associated with HOMA-IR in linear regression analyses under the 
same adjustment framework as in the mediation analyses (FDR < 0.05). 

Results 

Characterization of MetaCardis population with lifestyle variables 

The 1643 studied individuals of the MetaCardis population include a metabolically healthy group (n = 305) 
and pathology groups defined as follows: individuals with metabolic syndrome (n = 220), type 2 diabetes 
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(n = 477), obesity (BMI ≥ 30; n = 334), and cardiovascular diseases (n = 307) (Supplementary Table 1). 
Pharmacological treatments have been previously identified as factors that often mask disease-related 
signatures of the gut microbiome.29,68 Thus, medications such as 5-y retrospective exposure to antibiotics 
(total number of courses), metformin, statin and proton pump Inhibitors (PPI) usage were included as 
covariates in the analysis. Analyses of dietary variables were adjusted for total energy intake (in kcal/day), 
such as the AHEI score, while metagenomic analyses were adjusted for BMI or MetaCardis pathology 
groups (see Methods section and figure legends for details). To confirm some observations in independent 
populations, we used data from 433 participants of the GutInside study,31 which recruited French adults 
with overweight or obesity across French regions between September 2018 and January 2020. Baseline data 
were used from this dietary intervention program. Subjects’ phenotypes are provided in Supplementary 
Table 2. Both GutInside and MetaCardis cohorts used the same lifestyle assessment tools: e.g., Food 
Frequency Questionnaires (FFQ) for habitual dietary intake,34 the Recent Physical Activity Questionnaire 
(RPAQ) for physical activity and sedentary behavior36 and gathered smoking-related information, includ-
ing past habits and current cigarette consumption. Shotgun metagenomic sequencing was available for 
both cohorts.2,29,31 

Dietary components, physical activity traits and smoke associate with gut microbiome gene 
richness 

We first examined the relationships between the GMGR and individual variables, including food groups 
(n = 65), nutrients (n = 72), physical activity (n = 36) variables and smoking habits (n = 3, as qualitative 
variables). Among the 173 quantitative variables, 40 (23.12%) were significantly associated with the GMGR 
(FDR <  0.05; partial Spearman correlation analyses; Figure 1A). The adjusted effect sizes were modest 
(Spearman’s Rho ranging from −0.12 to 0.13) suggesting that lifestyle variables, considered independently, 
modestly impact GMGR variation. As shown in Figure 1A, among the food groups, positive associations 
with the GMGR were observed for the intake of alcoholic beverages (e.g., wine and beer), tea and coffee 
(classified as hot beverages), offal, nuts, and fish (including oily fish), as well as sweets and spreads. At the 
nutrient level, positive associations with the GMGR were found with alcohol, vitamins A/E, D, B7/B8 (e.g., 
biotin) and poly-unsaturated fatty acids and omega-6 fatty acids, as well as with the intake of total 
polyphenols and their subclasses, such as chalcones (found in beer), isoflavonoids (found in soja, onions, 
wine and tea) and hydroxycinnamic acids (found in coffee). These nutrient-based findings are consistent 
with those at the food group level and are in agreement with reports linking polyphenols to the gut 
microbiome diversity and health.69,70 

Our analysis also revealed negative associations with the intake of trans fatty acids, previously 
implicated in diet-induced inflammation and containing bacteriostatic additives,71 and with sugars and 
carbohydrates. At the food group level, we observed a significant negative association between GMGR and 
“grains and starches” (rho = -0.08, FDR = 7.55e-03, Figure 1A), which was driven primarily by the intake of 
refined grains and simple sugars, which were grouped in this category. This food group shows the 
strongest negative association with the GMGR (e.g., “Refined grains and starches”; rho = −0.12, 
FDR = 1.15e-05; Figure 1A). This negative association was replicated in stratified analyses across the 
clinical subgroups (Supplementary Figure 2A). Conversely, a positive association between the intake of 
fruits and the GMGR was found in the healthy group (Supplementary Figure 2A; rho = 0.22, FDR = 0.016). 
With respect to physical activity, variables related to both occupational and leisure-time (partly reflecting 
total physical activity) were positively linked to GMGR (Figure 1A,B), while sedentary behaviors such as 
screen time in front of television or computer (indicator of sedentary behavior) were negatively associated 
with the GMGR (rho = -0.072, FDR = 0.018; Figure 1A). Smoking status was significantly associated with 
the GMGR, with current smokers showing a reduced GMGR (FDR = 3.72e-04; linear regression;  
Figure 1B). These associations remained significant after adjustments for clinical status and BMI 
(Supplementary Figure 2C,D). 

Overall, we observed a majority of positive associations between the GMGR and many variables related 
to dietary intake, including some foods not typically considered healthy and physical activity, whereas 
sedentary behaviors, smoking, sugars and trans fatty acids were negatively associated with the GMGR. 
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Figure 1. Associations between diet, physical activity factors, and a composite lifestyle score, and gut microbial gene 
richness (GMGR) are shown. (A) Bar plots showing 40 food groups, nutrients, and physical activity variables significantly 
associated with the GMGR (FDR < 0.05). Associations are based on partial Spearman's rank correlations adjusted for age, 
recruitment center, energy intake (kcal), antibiotic treatments (courses in the past 5 y), and the use of metformin, statins, 
and proton pump inhibitors (PPIs) (MET = metabolic equivalent of task; h per week = hour per week). (B) Associations of 
lifestyle factors (total physical activity and smoking status) with the GMGR. Physical activity is categorized into tertiles 
(low/medium/high). The estimated marginal means of the GMGR across these levels are derived from linear regression 
models adjusted for age, recruitment center, energy intake (kcal), antibiotic treatments, and the use of metformin, statins, 
and PPIs (FDR < 0.05; ANOVA tests on linear regression models). (C) Associations of dietary scores (AHEI, DASH, and aDII) 
and 25 dietary diversity and variety scores with the GMGR (*: p < 0.05; #: FDR < 0.05; partial Spearman's rank correlation). 
The fully adjusted model (full model) included adjustments for age, recruitment center, energy intake (kcal), antibiotic 
treatments, and the use of metformin, statins, and PPIs. The fully adjusted model + AHEI includes additional adjustment by 
the alternative healthy eating index to evaluate independence from diet quality (AHEI itself excluded in these analyses). 
Scores are presented for global dietary scores (top), overall diet (middle) and specific food groups (bottom). The variables 
on the y-axis are ordered by the ratio of partial Spearman correlation coefficients with and without AHEI adjustment 
(right-most panel). (D,E) Distribution of individuals in the MetaCardis population across levels of the QASD score coloured 
by clinical group and metagenome-built enterotypes respectively (* = FDR < 0.05, post-hoc analysis for Pearson’s chi- 
square test for count data). (F) Top bar plots represent the effect sizes (F-values) derived from the ANOVA Type III test on 
linear regression models where the GMGR (dependent variable) is regressed against the QASD score and its individual 
components (y-axis, 1 regression model × independent variable) under different adjustment frameworks (Ref. adjustment: 
age + recruitment center + energy intake (kcal) + antibiotic treatments, and use of metformin + statins + PPIs; group =  
metacardis clinical groups) in individuals of MetaCardis cohort. The bottom panels represent the estimated marginal 

means of the GMGR across the QASD score levels and quintiles of the distribution of QASD score individual components 
derived from the same linear regression models (**: FDR < 0.05, * = P-value < 0.05 & FDR > 0.05, NS = non-significant; 
ANOVA type III test). (G) Similar analyses as panel D were performed in the GutInside cohort (n = 433).       
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These observations are in agreement with prior studies in general populations,7,72 which also reported 
modest effect sizes for individual lifestyle variables. 

Dietary diversity and variety associate with microbiome gene richness regardless of dietary quality 

To better capture the complexity of dietary behavior, we further explored associations between the GMGR 
and dietary scores, including those reflecting dietary diversity, variety and quality as well as the inflam-
matory potential of the diet. Considering commonly used dietary scores combining food items (e.g., AHEI, 
DASH, and the inflammatory score (DII)), the AHEI score, which reflects diet quality, showed a significant 
positive association with the GMGR (partial Spearman rho = 0.12, FDR = 1.28e-05; Figure 1C, adjusted 
model including age, recruitment center, energy intake (kcal/day), antibiotic treatments, and the use of 
metformin, statins, and PPI). In contrast, the aDII was negatively associated with the GMGR (partial 
Spearman rho = −0.07, FDR = 4.05e-03, Figure 1C, with the same adjusted model). No significant associa-
tion was observed between the DASH score and the GMGR (Figure 1C). However, further analyses 
adjusting for diet quality (AHEI) revealed a nuanced picture: the previously significant association of the 
aDII with the GMGR became non-significant while the DASH score showed a significant negative 
association (partial Spearman rho = −0.07, FDR = 8.76e-03). These results likely reflect shared variance 
across dietary scores, as both DASH and aDII were positively or negatively strongly associated with AHEI 
(Spearman rho = 0.56, p value = 4.42e-136; Spearman rho = −0.44, p -value = 5.37e-81 respectively). 

Other indices encompass diet diversity (“diversity all diet”), specific food group variety (“variety”), simple 
counts of different foods consumed within groups (“count”), and the evenness of food consumption within 
groups (“Simpson”). We therefore calculated 25 scores to assess these dietary patterns and examined their 
statistical relationships with the GMGR (see Methods and Supplementary Table S3 for detailed descriptions). We 
notably calculated the normalized composite “dietary and variety score of the diet”46,47 and the healthy food 
diversity index (HFD), which combines both diversity and variety dietary information.45 Fifteen of these scores 
were positively associated with the GMGR (Figure 1C; partial Spearman rho >0, FDR <0.05; fully adjusted model), 
including 7 of the 9 scores describing dietary diversity. Notably, 11 of these associations remained significant after 
adjustment for diet quality (assessed by the AHEI). Furthermore, for 2 scores (e.g., “Diversity Simpson all diet, 
without beverages” and “Variety count Meat, Fish and Eggs”), the associations with the GMGR were even 
strengthened after adjusting for AHEI (Figure 1C; fully adjusted model + AHEI; see Methods), with the “Diversity 
Simpson all diet, without beverages” score being the one with the highest increase in the strength of the 
association with the GMGR after adjusting for AHEI (Figure 1C; Rho ratio with/whithout AHEI, left panel). 

By decomposing food diversity indices across food groups, we found that the “Variety count of whole grains 
and starches” had the strongest positive association with the GMGR, followed by the variety of “fruits and 
vegetables” (measured by the “count” index), “Beverages, including alcohol” (measured by the count and Simpson 
indices) and the Simpson index for “meat, fish, and eggs” (Figure 1C). Conversely, the variety count for “Refined 
grains and starches” showed a negative, though statistically non-significant, association with the GMGR. This 
finding aligns with the negative associations observed at the nutrient and food group levels for “sugars and simple 
starches”, as shown in Figure 1A. Importantly, the observed positive associations with the GMGR extended to 
diverse foods not typically considered healthy, such as a variety of “beverages, including alcohol”. The score 
“Diversity count all diet” was the score most strongly associated with the GMGR that remained associated after 
adjusting for dietary quality. In contrast to observations in other cohorts,7 the HFD score was not associated with 
GMGR in the MetaCardis population when considering the entire cohort or clinical subgroups (Figure 1C, 
Supplementary Figure 2B). Taken together, dietary diversity and variety, regardless of perceived food healthful-
ness, were positively associated with GMGR in this population with cardiometabolic disorders. 

A new composite lifestyle score is associated with GMGR, regardless of cardiometabolic phenotype 
severity 

The modest effect sizes of individual nutritional variables and the influence of other lifestyle factors on 
GMGR variation in the MetaCardis population prompted us to develop an integrative metric. For this 
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purpose, we built a composite lifestyle score, e.g., QASD for dietary quality, physical activity, smoking and 
dietary diversity, by assigning tertile points to diet quality (AHEI, 0/1/2), total physical activity (total 
physical activity in MET-h.week-1, 0/1/2), and the diet diversity score. We selected the “Diversity Simpson 
all diet, without beverages” score (0/1/2), because it was associated with GMGR that was statistically 
independent from AHEI (Figure 1C; full model + AHEI). Notably, the AHEI includes alcohol consump-
tion, which was associated with the GMGR in univariate analysis. For smoking status, 0 point for current 
smokers and 1 for non-smokers were attributed. Using this additive approach by summing the scores for 
each component, participants received a total score between 0 (lowest QASD) and 7 (highest QASD), with 
higher QASD values reflecting more favorable lifestyle patterns. The distribution of QASD scores across 
the MetaCardis clinical groups showed significant differences (Figure 1D; chi-square test, p = 6.1e-09). The 
number of healthy individuals were significantly enriched in the high-QASD score levels (6–7; FDR < 0.05, 
post-hoc analysis for Pearson’s chi-square test for Count Data), while subjects with obesity were 
significantly overrepresented in the lowest-QASD score groups (0–1–2; FDR < 0.05, post–hoc analysis 
for Pearson’s chi-squared test for count data). In agreement, a higher QASD score was significantly 
associated with improved metabolic parameters, including lower levels of glycated hemoglobin, triglycer-
ides and serum CRP, as well as better corpulence profiles (e.g., lower BMI, percent body fat and waist 
circumference; Supplementary Table S4; p-values < 0.05, Kruskal‒Wallis test). 

Interestingly, we also observed significant differences in the distribution of QASD scores across the 
enterotypes defined in the MetaCardis population2 (Figure 1E, chi-square test, p = 1.3e-02), with the 
dysbiotic Bact2 enterotype being significantly enriched at low QASD score levels and significantly depleted 
at high QASD score levels (FDR < 0.05, post-hoc analysis for Pearson’s chi-squared test for count data). In 
line with this observation, we found a strong association between the composite QASD score and the 
GMGR in the whole population, which remained significant in several adjustment models that included 
the MetaCardis clinical groups as covariates (Figure 1F; FDR < 0.05; ANOVA test on linear regression 
models of the GMGR including the QASD and additional confounders; p-value < 0.05 on Tukey post-hoc 
pairwise tests across the QASD levels). The QASD score captured a broader range of GMGR variation than 
any of its individual components, notably the AHEI score (Figure 1F, Top Panel). This observation was 
partially replicated at the nominal p-value level in the GutInside cohort, where the QASD score out-
performed its individual components in explaining GMGR variation (Figure 1G; p-value < 0.05; ANOVA 
test on linear regression models of the GMGR, including the QASD score and additional cofounders such 
as age and gender). Extending these analyses to other clinical variables in addition to the GMGR, such as 
BMI, HbA1c and HOMA-IR (as a proxy of insulin resistance), revealed significant associations between 
the QASD score with the three tested clinical variables across 8/9 regression frameworks, being particularly 
strong for HbA1c. Here, it consistently outperformed its individual components (Supplementary 
Figure 3A). Established scores such as the aHEI and physical activity were significantly associated with 
BMI and HOMA-IR in all adjustment models, with the aHEI showing the largest effect sizes for BMI and 
HOMA-IR (Supplementary Figure 3A). However, the QASD remained complementary, as it captured 
associations extending beyond single-behavior scores, particularly with HbA1c. These findings were not 
fully replicated in the GutInside cohort comprising only subjects with overweight and obesity, where only 
physical activity showed a significant association with HbA1C (Supplementary Figure 3B). 

Bi-directional mediation analysis reveals the QASD score's dual impact on the gut microbiome and 
metabolic health 

The individual associations of the QASD score with the GMGR and with the clinical profile in the 
MetaCardis population led us to explore potential bidirectional mediation relationships between the 
QASD score, the gut microbiome, and clinical outcomes to better understand how these factors interact. 
We first evaluated the statistical interaction between the QASD score, GMGR and clinical variables 
considering routine and easily measurable phenotypes, e.g., body mass index (BMI) and glucose metabolic 
status (using glycated hemoglobin for glucose control and HOMA-IR), by conducting bi-directional 
mediation analyses under two different hypotheses with the QASD score as the independent variable 
(Figure 2A). The first hypothesis (direction 1 in Figure 2A) tested whether the QASD score influences the 
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GMGR through variation in individuals’ clinical and biological variables (as mediators). The second 
hypothesis (direction 2 in Figure 2A) tested whether the QASD impacts individuals’ profile, via GMGR 
variation (e.g., as a mediator). We performed this analysis considering the upper and lower levels of the 
QASD score (QASD score 0–1–2–3; n = 662 vs. QASD score 5–6–7; n = 546) as well as each of these levels 
(e.g., “low” QASD or “high” QASD) versus intermediate QASD score level (QASD = 4; n = 435). The 
mediation analyses supported both hypotheses, especially when comparing upper and lower QASD score 
levels in relation to metabolic variables (high vs. low, Figure 2B, P-value < 0.05 for the total effect, average 
direct effect (ADE) and average causal mediation effect (ACME); mediation analyses adjusted by age, 
gender, recruitment center, and intake of metformin, statin and proton pump inhibitor). 

In line with Hypothesis 1, variations in HOMA-IR and glycated hemoglobin explained 12.2% and 6.8%, 
respectively, of the influence of the QASD score on the GMGR (Figure 2C). However, our analysis also 
revealed that the QASD score significantly affects individuals’ glucose metabolism status and, that a 
significant proportion of this effect could be attributed to alterations in the GMGR. As such, in line with 
Hypothesis 2, 27.8% of the effect of the QASD score on HOMA-IR and 13.0% on glycated hemoglobin 
could be attributed to changes in the GMGR. Importantly, no significant mediation effect was observed 
when using BMI as an outcome or mediator. In additional support to these results, PERMANOVA-based 
mediation analyses73 using Bray-Curtis distances derived from gut microbiome composition confirmed the 
significant mediation effect of the gut microbiome on the association between lifestyle (QASD score) and 
clinical outcomes (BMI, HbA1C and HOMA-IR) when considering the upper and lower levels of the 
QASD score (Figure 2D–E). 

Overall, we observed a significant bi-directional mediatory effect of GMGR and metabolic phenotypes 
on reciprocal effects of the QASD score on these variables, although with a stronger effect size when 
GMGR and gut microbiome composition is explored as mediator of QASD score effect on insulin 
resistance marker. 

The QASD score and specific dietary components explains variations in gut microbiome 
composition 

Since GMGR represents only a facet of microbiome composition, we further extended our investigation to 
deeper evaluate the impact of QASD score together with other nutritional and lifestyle variable on gut 
microbiome composition both in MetaCardis population and in participants from the GutInside study for 
confirmation purpose. Distance-based redundancy analyses (dbRDA) identified 47 lifestyle variables 
significantly associated with microbiome composition, defined as the abundance of metagenomic species 
(MGS) pear individuals (Supplementary Table S5, FDR < 0.01). Among these, the AHEI score and the 
QASD score showed the greatest effect sizes, followed by the intake of sweets and spreads, “hydroxycin-
namic acids” (e.g., coffee nutrient), “alcohol” and diet abundance of vitamins such as vitamin D, vitamin A 
and biotin. A significant association was also found between the inflammatory potential (aDII) of the diet 
and microbiome composition (Supplementary Table S5). Furthermore, stepwise forward model selection 
by permutation of these 47 variables provided a model comprising 9 variables with a non-redundant 
explanatory power for microbiome compositional variation which accounted for 1.72% of the total 
variance (Figure 3A). These variables included two components of the QASD score (e.g., “AHEI score” 
and “Smoking status”), the intake of “Sweets and spreads”, “Tyrosine, Offal”, “Cereals, pasta, rice” and 
“Hydroxycinnamic acids”, the “Variety count of Meat, Fish Eggs” and the “Variety Simpson dairy 
products” (Figure 3A, “all QASD score items” panel). 

When the 4 individual variables composing the QASD score were excluded from the multivariate 
approach, the composite QASD score was the lifestyle variable with the highest non-redundant explana-
tory power in a multivariate model comprising 21 variables that explained 2.41% of the microbiome 
compositional variability (Figure 3A, “no QASD score items” panel). These findings highlight the added 
value of a composite such as the QASD score over its individual components in explaining microbiome 
variability in this population with cardiometabolic disorders. The multivariate model also included 
variables such as the inflammatory score of the diet and food variety scores and components 
(Figure 3A, “no QASD score items” panel). These observations were partially replicated in subjects with 
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overweight and obesity from the GutInside study.31 Here, the QASD score exhibited the strongest 
association with microbiome compositional variation (adjR² = 3.11e-03, p = 0.019, Supplementary 
Table S6) and was retained as the variable with the highest non-redundant explanatory power, both 
with and without its individual components (Figure 3B). These models in the GutInside cohort shared 

Figure 2. Mediation analyses of the impact of the QASD score on the gut microbiome and metabolic phenotypes. (A) 
Schematic representation of the two mediation hypotheses tested to evaluate the impact of the QASD score (independent 
variable) on the gut microbiome and clinical profiles of 1,643 individuals of MetaCardis study. In Direction 1, the QASD score 
impacts gut microbiome gene richness (GMGR; dependent variable), which is mediated by changes in clinical profiles 
(mediator). In Direction 2, the QASD score affects clinical profiles (dependent variable) mediated by alterations in the gut 
microbial gene richness (GMGR; mediator). The clinical variables tested included BMI, glycated hemoglobin, and HOMA-IR. 
Pairwise comparisons of the QASD score levels were conducted for low (0–1–2–3) vs. medium (4), low vs. high (5–6–7), and 
medium vs. high. Mediation analyses were adjusted for recruitment center, age, sex, and the use of metformin, statins, and PPIs 
(B) Confidence intervals of the beta coefficients representing the total effect (total), average direct effect (ADE), and average 
causal mediation effect (ACME) of the QASD score on the dependent variable in each direction (GMGR in Direction 1; clinical 
variables in Direction 2). Color and shape indicate the statistical significance of the mediation effects. Significant mediation in 
both directions (p < 0.05 for total, ADE, and ACME) was observed only between the upper and lower levels of the QASD score 
(high vs. low) with glycated hemoglobin and HOMA-IR. (C) Decomposition of the significant mediations observed between high 
and low levels of the QASD score, presented as a bar plot showing the proportion of the total effect and confidence intervals 
attributable to the mediator (clinical variable in Direction 1; GMGR in Direction 2). (D) Bar plot representing the -log10 
transformed P-values (x-axis) in PERMANOVA-based mediation analyses of the mediation effect of the gut microbiome 
composition (Bray‒Curtis distances derived from MGS abundance profiles), with QASD score as the exposure and clinical 
variables as outcomes. The dashed line represents the nominal significance level (p-value = 0.05). (E) Barplots representing the 
F-statistic values (x-axis) for the exposure–microbiome association term and the microbiome–outcome association conditional 
on the exposure term in PERMANOVA-based mediation analyses (* = P-value < 0.05).       
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Figure 3. Links between lifestyle factors and microbiome composition in the MetaCardis and GutInside cohorts. (A) Bar 
plot showing the cumulative effect sizes of multivariate models for non-redundant microbiome compositional variation 
(adjusted cumulative R² values) in individuals from the MetaCardis cohort (n = 1,643). The results are presented for models 
including all individual components of the QASD score (“all QASD score items” panel; FDR < 0.01 in dbRDA analyses and 
p < 0.05 in stepwise model building, n = 9 variables) and for models excluding the four variables that define the QASD 
score (“no QASD score items” panel; FDR < 0.01 in dbRDA analyses and p < 0.05 in stepwise model building, n = 21 
variables). (B) Bar plot showing cumulative effect sizes of multivariate models for non-redundant microbiome composi-
tional variation (adjusted cumulative R² values) in individuals from the GutInside cohort (n = 433). The results are shown 
for models including all individual components of the QASD score (“all QASD score items” panel; p < 0.1 in dbRDA analyses 
and p < 0.05 in stepwise model building, n = 5 variables) and for models excluding the four QASD score variables (“no 
QASD score items” panel; p < 0.1 in dbRDA analyses and p < 0.05 in stepwise model building, n = 5 variables). (C) Principal 
coordinate analysis (PCoA) of inter-individual differences in microbiome profiles (based on Bray–Curtis dissimilarity from 
MGS abundance data) in the MetaCardis cohort (n = 1,643). The arrows in the main panel represent the effect sizes of a 
post hoc fit of 9 continuous nutritional covariates identified in the multivariate models from panel A. Boxplots represent 
the distribution of Metacardis individuals at different levels of the QASD score across 1st and 2nd ordination axis, with 
points coloured by GMGR. (D) Principal coordinate analysis (PCoA) of inter-individual differences in microbiome profiles 
(based on Bray–Curtis dissimilarity from MGS abundance data) in the GutInside cohort (n = 433). The arrows in the main 
panel represent effect sizes of a post hoc fit of 12 continuous nutritional covariates identified in the dbRDA analyses 
(p < 0.1). Boxplots represents the distribution of GutInside individuals at different levels of the QASD score across the 1st 

and 2nd ordination axis, with points coloured by GMGR. The full results from univariate and multivariate analyses are 
provided in Supplementary Tables S5 (MetaCardis data) and S6 (GutInside data). The common/specific legends in panels A 
and B corresponds to variables shared/unshared by models with/without the QASD score items.       

16 S. ADRIOUCH ET AL. 



variables with those derived from the MetaCardis cohort, including hydroxycinnamic acid intake and 
consumption of meat, fish, and eggs, captured by different diet diversity metrics (e.g., “Variety count” in 
MetaCardis, “Simpson diversity” in GutInside; Figure 3A,B). However, among the individual components 
of the lifestyle score, only the “dietary diversity excluding beverages score” (e.g., “Simpson Diversity Index 
for all diet, without beverages”) was significantly associated with dbRDA analyses in the GutInside cohort 
(adjR² = 1.14e-03, p = 0.048; Supplementary Table S6), although it was not retained in the final multivariate 
models shown in Figure 3B. Together, these findings underscore that while many individual dietary factors 
contribute modestly to gut microbiome variation, integrative metrics such as the QASD score may provide 
a more comprehensive assessment of microbial compositional differences across cardiometabolic 
populations. 

The QASD score associates to microbiome enterotype constellations 

We next explored how the QASD score, related variables and other dietary components were associated 
with enterotypes. In previous studies, 4 distinct microbiome communities (e.g., enterotypes) were identi-
fied using Dirichlet Multinomial Mixture Models (DMM).2,61 These enterotypes correspond to partially 
overlapping ellipsoids in the PCoA ordination landscape based on Bray-Curtis beta-diversity distances 
(Figure 3C). Given the prominent dysbiotic character of one enterotype (e.g., Bacteroides 2 or Bact 2) in 
terms of microbiome diversity and microbial cell density, its strong association with obesity and 
inflammation2 and the significant differences in enterotype distribution observed across levels of the 
QASD score (Figure 1E), we evaluated in depth the association of enterotypes with the QASD score and 
nutritional/lifestyle variables with a significant impact on the gut microbiome composition. Projecting the 
9 lifestyle variables (from Figure 3A) retained in the multivariate model onto this PCoA space revealed that 
the AHEI score, intake of “sweets and spreads”, “hydroxycinnamic acids” and the “variety count of meat, 
fish and eggs” were associated with the microbiome compositional space dominated by the Ruminococcus 
enterotype (Rum, Figure 3C). This enterotype has previously been associated with increased GMGR.2 A 
similar pattern was observed for additional variables retained in the multivariate model when the QASD 
components were excluded, e.g., breakfast cereals, lignans, polyunsaturated fats, dietary variety, starches, 
fruits and vegetables, and alcohol intake were positively associated with the Rum enterotype. Conversely, 
the intake of tyrosine, offal, “cereals, pasta and rice” and the variety of dairy products showed associations 
in the opposite direction in the ordination space (Figure 3C). This observation extended to trans fatty 
acids, poultry, processed meat and physical activity variables, such as leisure sedentary time and energy 
expenditure, which were associated with the opposing compositional direction. 

Strikingly using our integrative metrics, QASD score levels showed a significant segregation along the 
1 st and 2nd ordination axes of the PCoA (Figure 3C). The 1 st axis, which was strongly anticorrelated with 
GMGR (Spearman Rho = –0.6, p < 2.2 × 10−16), separated individuals with low QASD scores (0–1–2), who 
clustered at the extreme positive values of the axis corresponding to the Bact2 enterotype region. This 
enterotype was previously shown to be associated with a lower GMGR, a reduced bacterial load, systemic 
inflammation and obesity severity.2,31 In contrast, the second axis, strongly correlated with the GMGR 
(Spearman ρ = 0.7, p < 2.2 × 10−16), was enriched in individuals with high QASD scores (6–7) at its extreme 
positive values, corresponding to the Ruminococcus enterotype region (Figure 3C). These findings were 
partially confirmed in the GutInside population, where a high QASD score was associated with the Rum 
enterotype, while a higher aDII score was associated with the Bact2 enterotype, indicating moderate 
reproducibility of these associations in individuals with overweight and obesity (Figure 3D). 

Logistic regression analyses of enterotype status versus the 47 nutritional covariates retrieved in dbRDA 
analyses in the MetaCardis population (adjusted for age, sex, BMI, center of recruitment and use of 
metformin, statins, and PPIs) confirmed the relationships between diet components and enterotype 
stratification. At the QASD score level, we found a significant decrease in the probability of belonging 
to the Bact2 group with increased QASD score levels, while no significant association was observed with 
Ruminococcus status (Supplementary Figure 4A). At the nutritional level, the “variety count of meat, fish 
and eggs”, the intake of offals, biotin, vitamin D (in food) and “cookies and pastries” were significantly 
associated with a decrease in the probability of belonging to the Bact2 enterotype (p-value < 0.05; 
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Supplementary Figure 4B–F, Supplementary Results). This again emphasizes on the importance of dietary 
diversity and variety and not solely on food quality or the perceived healthiness of food. Interestingly, 
biotin intake in the diet was positively associated with the probability of the Prevotella enterotype in the 
logistic regression models (Supplementary Figure 4E, Supplementary Results), a community type domi-
nated by bacteria that are auxotrophic for biotin production.3 

Extended dbRDA analyses incorporating enterotype composition, clinical, biological and lifestyle 
variables confirmed that, despite the overlaps observed between enterotypes in the PCoA map, enterotypes 
largely outperformed other covariates in terms of explanatory power of gut microbiome compositional 
variation (Supplementary Figure 5A). Additionally, this analysis showed that in addition to BMI, fat mass, 
diabetes status and metformin intake, which explained the greatest variance, the AHEI and the QASD 
score were the most influential lifestyle variables on microbiome composition variance. The explanatory 
power of these lifestyle variables surpassed that of medications (e.g., statin intake) and biological variables 
such as lipid and hepatic blood markers (FDR < 0.01, dbRDA analyses; Supplementary Figure 5A, 
Supplementary Table S7). Other QASD components (such as smoking status, total physical activity 
without work (MET h week −1)) also emerged as significant contributors in these extended dbRDA 
analyses (FDR < 0.01; Supplementary Figure 5A). AHEI and smoking status were also retained in a 
multivariate model comprising 22 nutritional and clinical variables with non-redundant explanatory 
power, indicating that both the composite lifestyle score and clinical factors exert independent effects 
on microbiome compositional variation (Supplementary Figure 5B). Finally, associations between the 
QASD score and the gut microbiome composition were robust when adjusted for key confounders, 
including age, sex, country, BMI, metformin, statin and PPI intake (Supplementary Figure 5C). These 
findings highlight the value of considering composite lifestyle metrics, such as the QASD score, to capture 
relationships between dietary quality and diversity, lifestyle habits and the gut microbiome composition, 
including considered dysbiotic enterotypes such as Bact2. 

The QASD score associates with metagenomic species and blood metabolomic signatures 

We next examined more in depth the relationships of the QASD score with metagenomic profiles 
(taxonomic and functional) and precision phenotypes evaluated by metabolomics. Given the heteroge-
neous profile of MetaCardis population in terms of clinical and medication profiles, we employed a post 
hoc filtering approach using the metadeconfound R package29 to account for the potential effects of 
medications (Metformin, statin, and PPI intake) and clinical status on putative associations of the QASD 
score with metagenomics and metabolomics measures. Among the examined features, MGS and serum 
metabolites presented the greatest number of significant and rigorously deconfounded associations, 
totaling 122 MGS and 319 serum metabolites with an FDR < 0.1. Most of these associations were 
statistically significant between the upper and lower levels of the QASD score (0–1–2–3, low-QASD, vs. 
5–6–7, high-QASD) (Supplementary Figure 6). Only 6 and 11 features were retained in the functional 
modules (GMM, Figure 4C, discussed in the Supplementary Results) and mOTUs, respectively, while no 
urine metabolite was retained (Supplementary Figure 6; detailed results in Supplementary Table S8). We 
thus focused the subsequent analyses on 91 MGS and 272 serum metabolites with absolute effect sizes 
(Cliff’s delta) higher than 0.1. 

At the MGS level, higher QASD scores were associated with an enrichment of Firmicutes lineages, 
including Faecalibacterium prausnitzii (12 MGS from the Faecalibacterium genus and 4 MGS corre-
sponding to different F. prausnitzii strains, such as KLE1255 and L2-6), Eubacterium eligens, and 
multiple MGS from the Oscillibacter and Roseburia genera. In contrast, lower QASD scores were 
significantly linked to increased levels of Clostridium bolteae and Ruminococcus gnavus lineages 
(Figure 4A; Supplementary Results and Supplementary Table S9). We then examined which component 
of the QASD score captured the largest number of strictly deconfounded significant associations (e.g., 
using upper and lower levels of tertile decomposition for AHEI, physical activity and Simpson diversity 
index; smoking status as a binary variable). We found that AHEI and smoking status associate with 97 and 
101 MGS, respectively whereas total physical activity and the Simpson diversity index were associated with 
fewer MGSs, e.g., 17 and 4 MGSs, respectively (Supplementary Figure 7A,B). This finding aligns with the 
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Figure 4. Microbiome and metabolome features associated with the QASD lifestyle score. (A) Heatmap representing the effect 
sizes (Cliff's delta) of 91 metagenomic species (MGS) showing significant differences between lifestyle score levels (high vs. low; 
high vs. medium; medium vs. low). Lifestyle score levels are categorized as low (QASD 0, 1, 2, 3), medium (4), and high (5, 6, 7).  

(caption on next page) 
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significant, non-redundant impact of AHEI and smoking status on microbiome compositional variation 
(Figure 3A). Both smoking status and AHEI exhibited similar distributions of MGS changes when Cliff’s 
delta effect sizes were considered. This confirmed that most MGS showing strictly deconfounded 
associations were enriched in individuals with a high QASD score, high AHEI and non-smokers 
(Supplementary Figure 7C). Importantly, we also observed a significant positive association between the 
Cliff’s delta effect sizes of MGS changes with the QASD score and with its individual components, meaning 
that the overall QASD score captures the patterns of MGS variation in their individual components 
(Supplementary Figure 7D–G). 

Regarding metabolomic signatures, a high QASD score was positively associated with hippurate, 
tryptophan-derived compounds, acyl-cholines, coffee-, and pyrimidine-related metabolites. Conversely, 
lower QASD scores were associated with elevated levels of branched-chain amino acids and their 
derivatives, bile acid metabolites, markers of tobacco consumption, and dipeptides (Figure 4B, 
Supplementary Results, and Supplementary Table S10). Deconfounding analyses of serum metabolites 
for the components of the QASD score showed results consistent with those described for MGS. AHEI and 
smoking status captured the greatest number of significant associations, with 311 and 377 serum 
metabolites, respectively, versus 103 and 70 for total physical activity and the Simpson diversity index 
(Supplementary Figure 7H–I). An increased fraction of specific metabolites was uniquely associated with 
either AHEI or smoking status (Supplementary Figure 7H–I). AHEI and the QASD score showed similar 
Cliff’s delta effect sizes, whereas smoking status showed a marked negative skew, reflecting enrichment of 
specific metabolites in smokers (Supplementary Figure 7J). These metabolites (Cliff’s delta < -0.5 for non- 
smokers vs. smokers; FDR < 0.1, strictly deconfounded status) included cotinine, hydroxycotinine and 
norcotinine, which are indicative of tobacco use. Notably, they were also identified through the QASD 
score, albeit with smaller effect sizes (Cliff’s delta ranging from −0.25 to −0.1; FDR < 0.1; Supplementary 
Figure 7J,N). Finally, we observed a significant positive association between the Cliff’s delta effect sizes of 
metabolite changes with the QASD score and with its individual components except the Simpson diversity 
index, indicating that the QASD score overall captures the patterns of metabolite variation in their 
individual components (Supplementary Figure 7K–N). Overall, this analysis identified distinct MGS 
and metabolic species associated with high versus low QASD scores, with the QASD score capturing a 
substantial proportion of metagenomic and serum metabolomic biomarkers of its individual components 
with comparable effect sizes. 

Gut microbiome strongly mediates the effect of the QASD score on serum metabolomics profiles 

Finally, to integrate deconfounded individual MGS and serum metabolome biomarkers associated with the 
QASD score, we performed extended mediation analyses to assess tripartite relationships, testing whether 
the metagenome mediates the effect of the QASD score on serum metabolomic profiles, and conversely, 
whether serum metabolites mediate the impact of the QASD score on MGS abundances. We focused on 91 
MGS and 272 metabolomic features that were robustly associated with the QASD score after a strict 
deconfounding approach (FDR < 0.1), and we demonstrated a substantial effect size (absolute Cliff’s delta 
effect size > 0.1). We tested two primary mediation hypotheses. The first hypothesis proposed that MGS 

The effect sizes are strictly deconfounded by metformin, statin, PPI intake, and MetaCardis clinical groups, based on 
metadeconfoundR results (FDR < 0.1, OK_sd status meaning strictly deconfounded association, and absolute Cliff's delta > 0.1). 
Positive values indicate a higher abundance of the MGS at the reference level of the pairwise comparison (e.g., in HvsL, Cliff's 
delta > 0 denotes higher abundance at the “high” level of the lifestyle score compared to “low”, in red; Cliff's delta < 0 denotes 
lower abundance at the “high” level compared to “low”, in blue). The complete list of 122 MGS with significant differences 
between lifestyle score levels is available in Supplementary Table S8. (B) Same as panel A for 204 annotated serum metabolites 
with significant differences across lifestyle score levels (FDR < 0.1, OK_sd status, and absolute Cliff's delta > 0.1). The complete 
list of 319 metabolites with significant differences across lifestyle score levels is available in Supplementary Table S8. (C) Same as 
A-B for 6 gut metabolic modules (GMM) with significant differences across lifestyle score levels (FDR < 0.1, OK_sd status, and 
absolute Cliff's delta > 0.1). The text labels in heatmaps represent the significance level of the metadeconfoundR results 
(# = FDR < 0.001, ** = FDR < 0.01,* = FDR < 0.1).       
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mediates the relationship between the QASD score and the host's serum metabolome, indicating a 
microbiome-driven mediation pathway (Direction 1, Figure 5A). The second hypothesis explored an 
alternative scenario in which the host metabolome mediates the effect of the QASD score on the gut 
metagenomic landscape (Direction 2, Figure 5A). These hypotheses were tested across all deconfounded 
MGS-serum metabolite pairs stratified by the QASD score levels (high vs. low, high vs. medium, medium 
vs. low). importantly, for inclusion in this analysis, each MGS-serum metabolite pair exhibited significant 
reciprocal associations (FDR < 0.05, linear regression adjusted for center of recruitment, age, sex, and 
intake of metformin, statins, and PPIs). 

Whereas bidirectionality was present, our findings strongly supported the preminence of the first 
hypothesis. Considering the high and low levels of the QASD score, there were 2,151 significant media-
tions in Direction 1 and 1,306 in Direction 2. Of these, 1,075 mediations (45.14% of the total) were specific 
to Direction 1, while 230 (9.65% of the total) were specific to Direction 2, and there were 1,076 significant 
mediations (45.19% of the total) in both directions (Figure 5B, Supplementary Table S11, Supplementary 
Figure 8). For intermediate QASD score levels, no significant mediations were observed for high vs. 

Figure 5. Summary of bidirectional mediation analyses between the QASD score, metabolites, and metagenomic species 
(MGS). (A) Schematic representation of the two tested directions for causal mediation driven by the QASD score 
(independent variable). In Direction 1, the QASD score affects serum metabolites (outcome variable) mediated by the 
abundance of MGS (mediator). In Direction 2, the QASD score impacts the MGS (outcome variable) mediated by serum 
metabolites (mediator). Mediation tests were conducted for all pairwise combinations of MGS and serum metabolites that 
showed significant variations between the QASD score levels in the drug deconfounded analyses. All the mediation 
analyses were adjusted for recruitment center, age, sex, and the use of metformin, statins, and PPIs. (B) Venn diagrams 
summarizing the number of significant mediations (FDR < 0.05 for average causal mediation effect (ACME), average direct 
effect (ADE), and total effect) found in each direction across pairwise QASD score levels. (C) Density plots showing the 
proportion of mediation effects in shared significant mediations for Direction 1 (MGS as a mediator; serum metabolites as 
outcomes) and Direction 2 (serum metabolites as mediators; MGS as outcomes). (D) Density plots illustrating the 
proportion of mediation effects in specific significant mediations for Direction 1 and Direction 2. (E) Decomposition of 
the 2151 significant mediation relationships in Direction 1 (QASD → MGS → metabolite) observed between high and low 
QASD score levels, based on the proportion of the total effect of the QASD score on serum metabolites mediated by MGS 
abundances (y-axis). (F) Decomposition of the 1306 significant mediation relationships in Direction 2 (QASD → Metabolite 
→ MGS) observed between high and low QASD score levels based on the proportion of the total effect of the QASD score 
on MGS abundances mediated by serum metabolite levels (y-axis).       
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medium levels whereas only 40 significant mediations were found for medium vs. low levels, with 16 (40%) 
significant mediations in both directions (Figure 5B). This suggests that high and low levels of the QASD 
score have the most substantial impact on an individual's metagenomic and metabolomic profiles. 

Focusing on high and low levels of the QASD score, we compared both directions in terms of the 
proportion of the mediation effect on the tested outcome variables. Significant mediations ranged from 
2.28% to 34.03% of the total effect in Direction 1 (e.g., microbiome as a mediator) and from 3.89% to 
31.5% in Direction 2 (metabolome as a mediator), revealing a significant difference between shared 
mediations despite overlapping distributions (p = 1.355e-03, Wilcoxon rank-sum test; Figure 5C). More 
importantly, when direction-specific mediations were examined, the mediation effect was significantly 
greater in Direction 1 (p = 3.367e-04, Wilcoxon rank-sum test; Figure 5D), indicating that both the 
number and strength of specific mediations are higher when the microbiome acts as the mediator. 

This pattern was also observed when we stratified significant mediations by their strength in terms of 
the proportion of the mediating effect. We identified 106 and 88 high-impact mediations in each directions 
1 and 2, respectively, where the mediator (MGS or serum metabolites, respectively) explained more than 
20% of the effect of the QASD score on the exposure variable. Among these, 52.83% of the high-impact 
mediations in Direction 1 were specific (56/106), compared to 3.4% in Direction 2 (3/88). Similar trends 
were observed for medium-impact (10%–20%) and low-impact (<10%) mediations (Figure 5E–F). 

Given the large number of significant mediations observed and considering the mediating role of the gut 
microbiome on the QASD-HOMA-IR relationship described earlier (Figure 2), we next focused on the detailed 
visualization of the strongest significant mediations where the MGS and the serum metabolite were both 
significantly associated with HOMA-IR (FDR < 0.05, linear regression analyses under the same adjustment 
framework as mediation analyses). Focusing on the strongest specific mediations in Direction 1 involving 
annotated serum metabolites (as exposures), we found 47 high-impact mediations (mediation effect > 20%) that 
involved both positive and negative relationships depending on the effect of the MGS on serum metabolite 
levels. This causal inference exploration reflects the complex network of interactions between gut microbiome 
species that may influence the insulin resistance-associated metabolome profile. The strongest mediations were 
observed in individuals with a high QASD score and involved serum metabolites such as cinnamoylglycine and 
3-phenylpropionate, which were previously identified as biomarkers associated with high microbiome diver-
sity.74,75 Higher levels of these metabolites in individuals with high QASD scores were strongly mediated by 
increases in several Firmicutes lineages, including Faecalibacterium and Roseburia (Figure 6A, left panel; 
Supplementary Table S11). Conversely, these same metabolites were also mediated by decreased levels of 
Clostridium bolteae (27.46% mediation for cinnamoylglycine) and Lachnospiraceae bacterium 7_1_58FAA 
(31.37% mediation for 3-phenylpropionate), two MGS enriched in individuals with low QASD scores 
(Figure 6A, right panel; Supplementary Table S11). 

For individuals with low QASD scores, the strongest positive mediations involved increased levels of 
Clostridium bolteae, which significantly mediated the rise of four secondary bile acids, particularly 
isoursodeoxycholate sulfate (25.2% mediation effect; Figure 6B, top panel). This increase in isoursodeox-
ycholate sulfate was also mediated by decreased levels of two Firmicutes MGS (CAG00697: [Clostridium] 
hathewayi WAL-18680, 20.12% mediation effect; CAG00288: Firmicutes bacterium CAG:95, 22.85% 
mediation effect; Figure 6B, bottom panel; Supplementary Table S11). 

In Direction 2, only 3 high-impact mediations (mediation effect > 20%) were observed. These included 
phenylacetylglutamine, whose rise in individuals with a high QASD score mediated the rise of CAG00869: 
Roseburia sp. CAG:45 (20.99% mediation effect; Figure 6C, left panel), and the CAG00239: 
Lachnospiraceae bacterium 7_1_58FAA, whose decrease in individuals with a high QASD score was 
mediated by decreases in the secondary bile acid isoursodeoxycholate sulfate (24.95% mediation effect;  
Figure 6C, right panel) and increases in cinnamoylglycine (23.82% mediation effect; Figure 6D, top panel). 

Extending the analyses to medium-impact mediations (mediation effect > 10%), mediations associated 
with high QASD scores included environmental exposures like food-derived carotenoids (carotene diol),76 

which mediated increases in eight MGS (12.86% ± 1.74% mean ± standard deviation mediation effect), or 
Indolin-2-one, known for its antimicrobial activity,77 which mediated increases in four MGS 
(11.84% ± 1.1% mean ± standard deviation mediation effect), while perfluorooctanesulfonate, an environ-
mental pollutant,78 mediated 12.37% of the increases in CAG00439: Lachnospiraceae bacterium 
7_1_58FAA (Figure 6C, left panel). Additionally, metabolites derived from microbial metabolism, such 
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as the aforementioned phenylacetylglutamine (a human metabolite synthesized from phenylalanine 
degradation),79 mediated increases in seven MGS (17.18% ± 2.58% mean ± standard deviation mediation 
effect), and indolepropionate (a tryptophan-derived metabolite)-mediated increases in eight MGS enriched 
in individuals with high QASD scores (11.51% ± 1.37% mean ± standard deviation mediation effect;  
Figure 6C, left panel, 6D, top panel). These findings suggest that microbially-derived serum metabolites 

Figure 6. Overview of the strongest mediations between the QASD score-MGS-Serum metabolites in association with the 
HOMA-IR phenotype (A, B). Alluvial diagrams representing the 60 strongest significant mediation relationships (MGS- 
serum metabolites) in Direction 1 between high and low QASD score levels, categorized by the sign of the beta 
coefficients (increases/decreases in the mediator (MGS) and dependent variable (dv, serum metabolite) between high 
and low levels of the QASD score). (C, D) Alluvial diagrams representing the 41 strongest significant mediation relation-
ships in Direction 2 between high and low QASD score levels, categorized by the sign of the beta coefficients (increases/ 
decreases in the mediator (serum metabolite) and dependent variable (dv, MGS) between high and low levels of the QASD 
score). (E) Volcano plot representing the results of the linear regression analyses vs. HOMA-IR (dependent variable) of the 
25 MGS included in the mediations represented in panels A–D. Dashed horizontal line represents the threshold for a 
significant association in multiple testing (FDR < 0.05 on 91 tested MGS). (F) Similar as E panel for the 28 serum 
metabolites included in mediations of panels A–D. Full results of mediation analysis and regressions vs. HOMA-IR are 
available in Supplementary Table S11.       
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may play a mediating role in shaping gut microbial communities across the upper and lower ends of the 
QASD score. 

This mediating role was also observed with other secondary bile acids, such as glycoursodeoxycholate, 
which, in individuals with low QASD scores, mediated increases in CAG00239: Lachnospiraceae bacterium 
7_1_58FAA (13.33% mediation effect, Figure 6C, right panel) and decreases in six Firmicutes lineages 
(13.07% ± 2.21% mean ± standard deviation mediation effect; Figure 6D, bottom panel, Supplementary 
Table S11). 

In addition, although the MGS and serum metabolites involved in the mediations described above were 
all significantly associated with HOMA-IR, we also identified significant mediations driven by environ-
mental exposures such as tobacco consumption. For example, cotinine, enriched in individuals with low 
QASD scores, significantly mediated decreases in several Firmicutes lineages (e.g., CAG00055: Roseburia 
sp. CAG:182 and CAG00010_1: Faecalibacterium sp. CAG:74), despite cotinine itself not being signifi-
cantly associated with HOMA-IR (mediation effects of 14.08% and 20.51%, respectively; Supplementary 
Table S11). 

Finally, when we examined the linear regression results for the MGS and serum metabolites involved in 
these mediations, we found a clear pattern: secondary bile acids and MGS that were increased in 
individuals with low QASD scores (such as CAG01263: [Clostridium] bolteae ATCC BAA-613 and 
CAG00239: Lachnospiraceae bacterium 7_1_58FAA) were positively associated with HOMA-IR. In 
contrast, other serum metabolites and MGS that were increased in individuals with high QASD scores 
were negatively associated with HOMA-IR (Figure 6E,F). 

These findings highlight a predominant microbiome-to-metabolome mediation axis, particularly 
involving Firmicutes lineages, drived by the nutritional and lifestyle factors summarized in the QASD 
score, that could shape insulin resistance–associated profiles. While bidirectionality exists, the mediating 
effects were stronger when the microbiome acted as a mediator, and strong mediatory links, such as the 
rise of secondary bile acids, emerged in individuals with low QASD scores mediated by CAG01263: 
[Clostridium] bolteae ATCC BAA-613. These links underscore the ability of the QASD score to capture 
nutritional and environmental signatures that impact host phenotypes through alterations in the gut 
microbiome composition with links to the insulin resistance profiles of the host. 

Discussion 

We herein investigated how integrated lifestyle behaviors, captured by a composite lifestyle score (QASD), are 
related to gut microbiome gene richness and composition (including enterotype stratification) and host 
metabolic phenotypes in healthy individuals and those with cardiometabolic disorders. Whereas bidirectional 
interactions are evident, our findings highlight a significant mediating role for the GMGR in the association 
between QASD and glucose metabolism markers (HbAIc and HOMA-IR). By applying extended causal 
mediation analyses, we confirmed that the gut microbiome is a significant mediator in the impact of the 
QASD score on host phenotypes in terms of insulin resistance as well as serum metabolomic profiles. 
Accordingly, by accounting for different directions in mediation analyses, we identified interplays between 
insulin resistance-associated bacterial species and serum metabolites, with putative beneficial or detrimental 
effects on cardiometabolic health. 

We first observed that GMGR is not only associated with a large variety of individual food items, 
macronutrients and micronutrients including polyphenols and vitamins, but also with broader dietary 
patterns, measures of physical activity and smoking behavior. On the dietary side, we showed that 
associations between GMGR and dietary diversity (evaluated by different metrics) can be independent 
of dietary quality. Previous observations in healthy populations such as PREDICT and Flemish Gut 
cohorts,6,7 also showed that dietary diversity is associated with the GMGR. Our results are also in 
agreement with recent findings that omnivorous diets – more diverse than vegetarian or vegan diets – 
are associated with higher microbial diversity.15 Moreover, our identified positive associations between 
physical activity items and the GMGR were in line with observations made in healthier populations 
recruited in the US Arrivale cohort.80 Overall, our findings demonstrate that, in individuals with a 
spectrum of cardiometabolic disorders, greater GMGR is significantly associated with increased dietary 
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diversity, even when this diversity includes less healthy food items such as alcohol. The polyphenolic 
compounds present in alcoholic beverages such as red wine could contribute to these associations, as 
shown in previous studies.81 We should also consider that patients included in the MetaCardis study 
reported globally moderate alcohol consumption, with high alcohol consumption being a criteria of 
exclusion. 

Finally, even if high GMGR is generally considered a proxy for gut health, this is not the case in certain 
contexts, where high microbiome diversity could be associated with non-beneficial exposures.82,83 Our 
results underscore the clinical importance of distinguishing between the diversity and quality of food 
consumption, as greater food variety, if generally recommended, does not inherently reflect healthy eating 
patterns or more favorable microbiome configurations in populations with pathologies. 

Our observations extend beyond the GMGR. Combining lifestyle variables most strongly associated 
with the GMGR, which include, for example, alcohol as part of the AHEI, demonstrated a greater impact 
on microbiome composition across the MetaCardis population and pathology subgroups, compared to its 
individual components. Nevertheless, the effect size of individual dietary or lifestyle factors on gut 
microbiome compositional variation remains limited, a trend similarly observed in many other popula-
tions84-86. The four QASD components (e.g., dietary quality and diversity, physical activity levels and 
smoking status) appear to exert partially non-redundant effects. When we examined the most influential 
lifestyle variables that had non-redundant associations with microbiome composition, we found that they 
collectively accounted for less than 1.8% of the microbiome's variance. When clinical covariates were 
included, the explained variance moderately increased (approximately 2.5%), with AHEI and smoking 
status identified as key non-redundant contributors. These findings highlight, in individuals with cardi-
ometabolic diseases, the multifactorial nature of microbiome variation shaped by complex interactions 
among lifestyle behaviors, diet, clinical status, and potentially genetic and other environmental influences 
not captured in this analysis.6,87,88 

We described that a low QASD and a high dietary inflammatory index (aDII) were linked to the Bact2 
enterotype both in MetaCardis and the GutInside validation cohort. While the concept of enterotypes, 
which was originally defined based on beta-diversity, has been subject to debate since its introduc-
tion,61,89,90 a growing scientific consensus recognizes that enterotypes represent compositional archetypes 
within a continuous gradient of gut microbiome community structures.91 Specific bacterial constellation, 
such as the Bacteroides-dominated, low-diversity Bact2 enterotype is of particular interest since it has been 
linked to higher BMI and elevated inflammatory markers in different cohorts, including MetaCardis.2,31 

Here, a combination of diet items, patterns and lifestyle features explained some of these associations in 
the multivariate models. Interestingly, the association between increased intake of specific foods, such as 
offals, biotin- and vitamin D-rich items, and even cookies and pastries, and reduced Bact2 prevalence 
suggests that dietary diversity may help modulate dysbiotic microbiome profiles. In line with this 
hypothesis, in mouse experiments, in the context of diet-induced obesity, that the combined supplemen-
tation of biotin with fructooligosacharide leads to a significant improvement of metabolic health pheno-
type and gut microbiome diversity.3 Our observational findings should nevertheless be interpreted with 
caution in humans, as most dietary components account for a small fraction of microbiome variance. This 
underscores the need for tailored, multi-component interventions to evaluate their clinical impact and 
determine whether putative effects are mediated through microbiome-related mechanisms. 

We further explored the metagenomic and host metabolomic signatures and found significant associa-
tions between the QASD score and 91 identified MGSs and 272 serum metabolites. Many of the QASD- 
based associations are consistent with previously reported health-status associations (discussed in depth in 
the Supplementary Results and Supplementary Tables 9 and 10). We found that MGS enriched in 
individuals with high QASD scores belonged to bacterial groups such as F. prausnitzii, E. eligens, 
Oscillibacter, or Roseburia lineages previously described with health-promoting effects and found to be 
depleted in inflammatory diseases,7 emphasizing the contribution of lifestyle patterns to these bacterial 
modulations. Conversely, lower QASD scores were associated with MGS previously linked to systemic and 
postprandial inflammation and deteriorated health, such as C. bolteae and R. gnavus.7 The QASD score 
captured metabolomic signatures of clinical interest, including higher levels of microbiota- and diet- 
derived metabolites such as hippurate, acyl-cholines, and tryptophan-related compounds, while lower 
QASD scores were associated with branched-chain amino acids and tobacco-related metabolites. Given the 
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relevant associations with microbial species and metabolites consistently linked to health-promoting or 
disease-associated states, these results stimulated explorations of the complex interplay between the QASD 
score, gut microbiome composition, and metabolic phenotypes. 

Interventional studies on personalized diets have indeed demonstrated that gut microbial pathways and 
species, including subgroups of Faecalibacterium prausnitzii, can mediate the effects of various dietary 
components on metabolic health.92,93 Research from the LifeLinesDEEP cohort highlighted the mediating 
role of microbial vitamin B1 and B2 production in the relationship between fruit intake and diabetes 
risk.94,95 Findings indicate that the gut microbiome modulates the beneficial association between adher-
ence to a Mediterranean diet and cardiometabolic risk, using prospective data from 307 participants.96 

Moreover, microbiome diversity and composition were also described as mediators of the beneficial effects 
of a green Mediterranean diet on reducing cardiometabolic risk.97 

Our mediation analyses, in this cross-sectional design, demonstrated that interactions between the gut 
microbiome and host metabolism are bidirectional but strongly support a prominent pathway in which 
lifestyle factors influence the microbiome, which in turn mediates effects on metabolic phenotypes. First, 
the GMGR significantly mediated the association between the QASD score and clinically relevant glucose 
metabolism markers, e.g., HbAIC and HOMAIR, while BMI showed no significant mediation relationship. 
Clinical variables linked to glucose metabolism also mediated the link between lifestyle and the GMGR but 
with lower mediation effects. These results align with previous evidence that the gut microbiome 
modulates host glucose homeostasis rather than adiposity.98 

Our larger-scale mediation analyses expand upon this initial observation linking the GMGR to routine 
clinical markers by demonstrating, at a systems level, that the gut microbiome significantly mediates the 
effects of lifestyle on host metabolomic profiles. This was striking in the QASD-associated 
MGS–metabolite pairs, where the microbiome-to-metabolome direction yielded both a higher number 
of significant mediations overall (2,151 vs. 1,305 mediations) and direction-specific (1075 vs. 230 media-
tions) together with larger effect sizes compared to the reverse direction. These results provide strong 
evidence that specific gut microbial species play pivotal and eventually directional role in translating 
lifestyle patterns into systemic metabolomic phenotypes. Actually, Faecalibacterium and Roseburia 
lineages (e.g., associated with high QASD), were key microbial mediators, found to mediate increases in 
blood metabolites such as cinnamoylglycine and 3-phenylpropionate, both biomarkers of high microbiome 
diversity listed in the Microbial Metabolome Database (MiMeDB).99 Cinnamoylglycine, in particular, has 
been shown to have a microbial origin in mouse studies, suggesting a need for future mechanistic 
research.100 Conversely, Clostridium bolteae emerged as a key mediator of increased secondary bile 
acids, such as isoursodeoxycholate sulfate, in individuals with low QASD scores. This serum biomarker 
has been linked to postprandial lipemia, inflammatory diseases and impaired liver function.101 In support 
of a mechanistic interpretation, genome-scale metabolic models of C. bolteae from the AGORA2 
repository (including the ATCC_BAA_613 strain) contain bile salt hydrolases that deconjugate primary 
bile acids, producing the isoursodeoxycholate precursor ursodeoxycholate.102,103 In contrast, we found that 
serum metabolites reflecting environmental exposures, such as cotinine (a marker of tobacco consump-
tion) or carotene diol (food-derived carotenoids), significantly mediated the impact of the QASD score on 
gut microbial species. This mediation involved metabolites of microbial origin, including indolepropionate 
(from microbial degradation of dietary tryptophan), phenylacetylglutamine (from dietary phenylalanine), 
and secondary bile acids such as glycoursodeoxycholate and isoursodeoxycholate sulfate. These findings 
reinforce the fact that gut microbiome activity is modulated by metabolic responses captured through the 
serum metabolome, again supporting the concept of bidirectional mediation. Importantly, MGS and 
serum metabolites highlighted in these mediations were significantly associated with insulin resistance, 
revealing a robust enrichment pattern of secondary bile acids in individuals with low QASD scores and 
high HOMA-IR. This was particularly evident for CAG01263: [Clostridium] bolteae ATCC BAA-613, 
which mediated the abundance of secondary bile acids, and CAG00239: Lachnospiraceae bacterium 
7_1_58FAA also linked to metabolites associated with insulin resistance. Notably, the enrichment of 
secondary bile acids in individuals with insulin resistance and T2D has recently been reported in two 
Swedish cohorts,104 further supporting these findings in the MetaCardis population. 

This study has several limitations, including its cross-sectional design and reliance on FFQs to assess 
long-term dietary patterns, which may overlook short-term intake variability. Future studies should 
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consider incorporating 24-h recalls to capture short-term dynamic dietary fluctuations. The QASD score, 
while useful as a composite index reflecting overall lifestyle quality, may mask specific mediation effects 
driven by individual nutrients – such as tryptophan or phenylalanine – on metabolite levels via distinct 
microbial species. Previous work has shown both microbiome-mediated effects of diet on metabolites (e.g., 
Ruminococcus-mediated impact of fruit intake on urolithin B) and reverse pathways (e.g., plasma 
hippurate mediates the effect of coffee on Methanobrevibacter smithii). 87 

The statistical strength of the associations of the QASD score with the GMGR and gut microbiome 
composition observed in the MetaCardis population decreases in our validation cohort (GutInside). This 
could be explained by differences in cohort characteristics: GutInside is a more homogeneous population 
(subjects with overweight and moderate obesity from France) compared with MetaCardis, which spans a 
broader range of geographic origins and cardiometabolic conditions. The smaller sample size of GutInside 
(n = 433 vs. n = 1643 in MetaCardis) reduces the statistical power to detect associations of similar magnitude. 
Because the QASD score is derived from population-specific tertile distributions, part of the differences 
observed between cohorts (e.g., MetaCardis vs. GutInside) may reflect underlying variation in lifestyle 
component distributions. In this context, MetaCardis could serve as a reference population to calibrate 
QASD score categories in smaller or less diverse cohorts, but the reduced association in the GutInside 
population also highlights the importance of cohort context when interpreting lifestyle–microbiome associa-
tions and underlines the need for future studies in larger and more diverse populations. Finally, it remains 
challenging to fully disentangle whether the observed associations between QASD and microbial species or 
blood metabolites are direct, or instead secondary to gut microbial gene richness (GMGR) or host health status. 
These relationships are inherently complex, involving multiple potential interaction pathways, which may 
confound causal inference. In this context, while mediation analysis is a powerful approach for exploring 
pathways linking lifestyle, microbiota, and metabolism, it inevitably simplifies the complex, bidirectional nature 
of these interactions and cannot establish definitive causality. 

In conclusion, our study highlights the complex and bidirectional influence of lifestyle factors on the gut 
microbiome and host metabolic phenotype in individuals with cardiometabolic disorders. Through causal 
mediation analysis, we identified insulin resistance-associated microbial taxa and metabolites, such as 
Faecalibacterium prausnitzii, Clostridium bolteae, secondary bile acids, and indolepropionate, as key 
mediators linking the composite lifestyle score (QASD) to both host metabolomic profiles and the gut 
microbiome composition. These findings pave the way not only for mechanistic pathway exploration but 
also for potential biomarkers for identifying at-risk individuals and tailoring interventions. We propose the 
QASD score as an integrative composite tool to assess lifestyle–microbiome–host interactions and guide 
personalized nutritional or behavioral strategies. Ultimately, the proposed mediation framework offers a 
path toward prevention and monitoring of metabolic health in lifestyle intervention. 
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