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The sections in this article are

1
Introduction

In this chapter we discuss some of the bioinformatics and computational tools
that exist for finding modular domains and their cognate ligands. We begin with
a general discussion of protein architecture and relate this to the modular model
of protein function. We pay particular attention to the SMART, ELM, GlobPlot,
and DisEMBL resources, because these are the ones we are most familiar with. We
apologize to those involved with all the great resources out there that we have not
covered in this chapter.

2
Protein Architecture: Sequence, Structure, and Function

Nature seems to present protein functions in two states: structured and unstruc-
tured. Proteins are heteropolymers of amino acids; the sequence of amino acids
determines not only the structure and folding of a protein but also the lack of
structure. Molecular functions in proteins are associated with structural units, e.g.,
modular globular domains. However, an emerging large group of functional sites
are found primarily in unstructured parts of proteins.

In this chapter we explore how these sites can be identified in proteins and
describe some of the computational tools that can be used to analyze protein
sequences.
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2.1
The Modular Model of Protein Function

Multidomain proteins predominate in eukaryotic proteomes. The basic hypothesis
in what one might call the modular model for protein function is that individual
functions assigned to different sequence segments (often domains) combine to
create a complex function for the whole protein.

The term ‘modular’ refers directly to the autonomous nature of the individual
folding units determining these functions, whereas the term ‘globular’ describes
the structural state of a domain whether or not it is modular. A dogma in structural
biology is that atomic structure determines function. The modular model has
grown out of this paradigm; however, we know that at the fold level this is not
always true, one can find structures belonging to the same fold (e.g. in SCOP) that
have completely different functions: an example of this is glutathione-S-transferase
and S-crystallin. They share 75% sequence similarity and the same fold, but the
former is an enzyme and the latter a structural protein [4]. This is mainly a problem
when one is trying to infer function from sequence; having the atomic structure
solved frequently helps to define the function.

Because single-domain globular proteins are often, although not always, less
difficult to crystallize, for a long time they dominated our perceptions of typi-
cal protein structure (although fibrous proteins like collagen were of course well
known). Gradually, as protein sequences have accumulated, the monodomain view
of protein structure has been replaced by the realization that most proteins are
multidomain, at least in higher eukaryotes. Multidomain architectures are usual
for transmembrane receptors, signaling proteins, cytoskeletal proteins, chromatin
proteins, transcription factors, and so forth. Multidomain proteins can be described
as consisting of a series of modules or globular domains and a set of short linear
functional sites. An archetypal protein of the modular model is Src (Figure 1). Src
consists of three globular domains: SH3, SH2, and a tyrosine kinase domain (itself
consisting of two structural domains), and eight known functional sites including
four phosphorylation sites and three ligands of modular domains (SH3, SH2, and
cyclin).

2.2
Partitioning of Protein Space

It is becoming increasingly clear that many functionally important protein seg-
ments occur outside globular domains [27, 99]. The set (or space) of all observations
of protein structure and function is partitioned into two subspaces (Figure 2). The
first consists of globular units having binding pockets, active sites, and interaction
surfaces. The second subspace consists of nonglobular segments such as sorting
signals, post-translational modification sites, and protein ligands (e.g., SH3 or WW
ligands). Globular units are built of regular secondary structural elements and con-
tribute the majority of the structural data deposited in PDB. The globular function
space is described very well by domain databases such as SMART [49] and Pfam [11].
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Fig. 1 Domain and functional site archi-
tecture of the well known proto-oncogenic
protein kinase Src. About 60%–80% of pro-
teins from higher eukaryotes have analo-
gous modular architectures [6]. Even though
‘only’ ∼30 000 ORFs are predicted to be
in the human genome, most of these have

several splice variants and, in addition, sev-
eral functional sites, e.g., post-translational
modification sites (PTMs). These sites ex-
ist in various states and thereby increase
the number of different functional isoforms
several fold. The arrows show only the ap-
proximate locations of the functional sites.

Fig. 2 A conceptual model of protein struc-
ture and function observation space. Many
functions and their structures can be as-
signed to two different subspaces. A lin-
ear/nonglobular one and a globular one. It
is important to notice that these two sub-

spaces are not detached from each other
– a good example is disordered loops that
can protrude from a globular domain. Along
the borderline (white) we find coiled coils,
repeat proteins (often forming rods), and
single transmembrane helices (TM1).
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In contrast, the nonglobular subspace encompasses disordered, unstructured, and
flexible regions lacking regular secondary structure. Functional sites within the
nonglobular space are known as linear motifs catalogued by ELM [71], PROSITE
[80], and Scansite [101]. This group of sites includes protein interaction sites, cell
compartment targeting signals, post-translational modification sites, and cleavage
sites.

Traditionally, protein function and interaction have been studied from a domain-
centric view, and in fact, most large datasets that deal with protein interaction
have also focused on this type of interaction [2]. This is because methods such as
affinity purification tend to isolate ‘sticky’ and ‘nontransient’ protein complexes.
The methods for isolating transient interactions, such as the binding of a cognate
ligand to its modular domain, are different, and much smaller in-vivo datasets exist.

However, the nontransient network is only a part, and perhaps even a subpart, of
the interaction networks within the cell. We hope that this book will encourage the
scientific community to focus on collecting large amounts of data on domain-ligand
interactions, since only by having these can we try to obtain a full picture of the
cellular protein networks.

Below, we discuss how to annotate and analyze protein sequences for modular
domains and linear motifs. Methods for finding domains and predicting their func-
tion are described first, followed by a description of how to identify unstructured
regions and their potential functions.

3
Analyzing Globular Domains

The past three decades have seen relatively steady levels of domain discovery [18].
It seems likely that most of the more common mobile protein domains have
already been described in the literature (see, Figure 3). However, because there is
a large number of domains that are detectable only in a relatively small number
of proteins, we predict that various domains are still hiding in many proteins and
that each genome might harbor its own repertoire of species-specific or at least
lineage-specific domains [26].

Since the late 1970s, homology search has been an extremely powerful computa-
tional technique for assigning novel functions to proteins. In addition to database
search methods that were introduced in the early 1980s, an awareness of conserved
entities such as local motifs was incorporated into software that was able to scan
dedicated collections of such motifs in the mid 1980s (see, e.g., PROSITE, 1985,
for an early resource). Yet, the statistics of more sophisticated search methods
such as BLAST are still struggling with compositional biases due to nonglobular-
ity or multiple occurrences of such structural entities within a search sequence.
However, without discrimination of the rationale behind functionality (e.g., short
functional motifs that can change quickly in time, such as glycosylation patterns
vs. essential catalytic residues that stay conserved over billions of years), homology
searches with the aim of function prediction remain limited. Thus, in this chapter
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Fig. 3 Presence of SMART domains in the Homo sapiens proteome.
Domains present in more than 20 proteins are shown. Domain names
are displayed for only a few of the 314 domains.

we first define globular domains and then describe resources that help to annotate
known domains. Finally, we explain the analysis options of one of these resources,
SMART.

3.1
Globularity of Domains

Both ‘domain’ and ‘globular’ are terms defined in structural protein biology. They
have since been used in other contexts such as function description and sequence
analysis. Domains were first defined in structural terms, since early X-ray structures
showed separate entities with defined subfunctions connected by flexible regions.
The term globular refers to the globular structural state: a protein globule can be
depicted as a soluble sphere having a hydrophobic core. An operational definition
of globular proteins can be found in [19]:

Most natural proteins in solution are much smaller in their dimensions than com-
parable polypeptides with random or repetitive conformations and have roughly
spherical shapes; hence they are generally referred to as globular. Their physical
properties do not change gradually as the environment is altered (e.g., by changes in
temperature, pH or pressure) as do the properties of random polypeptides. Instead,
globular proteins usually exhibit little or no change, until a point is reached at which
there is a sudden drastic change and, invariably, a loss of biological function. This
phenomenon is known as denaturation.

Structural biologists relate the term globular to domains that are compact and
fold independently of the remainder of the host protein. Theoretical definitions of



6 Computational Analysis of Modular Protein Architectures

domains exist [85, 86, 88], including several algorithms for classifying domains and
folds [43, 87].

Resources for finding globular domains with determined tertiary structure in-
clude SCOP (fold level) [54], ASTRAL (domains from SCOP) [16], SUPERFAMILY
(hidden Markov models of SCOP domains) [35], and CATH (architecture level)
[37, 65]. However, these resources are confined to the structural knowledge base
PDB [96]. Therefore, only a subset of the total fold and structure space is described;
the remaining domains are to a certain extent described in Pfam and SMART.

3.2
Resources for Analysis of Globular Domains

There are numerous domain databases available that can be useful for detection
and analysis of globular domains in your favorite protein sequence. They can be
separated into several categories:

Ĺ Databases such as SMART (http://smart.embl.de/ [49]) and PFAM (http://
www.sanger.ac.uk/software/pfam/ [11]) primarily make use of hand-edited se-
quence alignments representing single protein domains with well defined bor-
ders at the sequence level. PROSITE (http://www.expasy.org/prosite/ [80]) is also
a handmade resource, but it contains a much more heterogeneous set of domains
and motifs although, for linear motifs, it has been superseded by ELM.

Ĺ Other databases rely on various automatic methods to generate their domain
signatures. This is so for ProDom (http://www.toulouse.inra.fr/prodom.html
[79]) and BLOCKS (http://www.blocks.fhcrc.org/ [38]). Such resources predict
domains that do not always correspond to known structural and globular domains
and for this purpose may not be as sensitive. However, these resources are of
substantial discovery value, since they collect conserved sequence segments that
might specify novel functions.

Ĺ In addition to the search functionality of the databases themselves, several
metaservers allow users to search multiple domain databases. The Interpro
database, at the EBI (http://www.ebi.ac.uk/interpro/ [61]) allows searching of the
PROSITE, PFAM, PRINTS, ProDom, and SMART model collections, and the
Conserved Domain Database (CDD) at the NCBI (http://www.ncbi.nlm.nih.gov/
structure/cdd/cdd.shtml [57]) allows searching of profiles derived from SMART
and PFAM using a modified version of the BLAST algorithm.

We describe the SMART resource in greater detail, because it focuses on modular
signaling domains.

3.3
SMART: Simple Modular Architecture Research Tool

The explosion of sequence data increases the need for computational sequence-
analysis tools that annotate novel genes with predicted functions. Function pre-
diction, however, is fraught with potential pitfalls, such as variable sequence
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divergence, nonequivalent functions of homologs, and nonidentical multidomain
architectures [25]. Detecting nonenzymatic regulatory domains is essential to pre-
dicting a protein’s cellular role, binding partners, and subcellular localization.

Such domains can be divergent in sequence and occur in contrasting multido-
main contexts. This leads to difficulties in unraveling the evolution and function
of multidomain proteins. To help in solving these problems, SMART has been de-
veloped to identify and annotate protein domains, particularly those in eukaryotes
that are genetically mobile and difficult to detect.

3.3.1 The SMART Alignment Set
Domain detection in SMART relies on multiple sequence alignments of represen-
tative family members.

Alignment Construction Protocol The starting point for constructing a multiple
sequence alignment that optimally represents a domain family is an alignment of
divergent family members based on known tertiary structures, where possible, or
from homologs identified in a PSI-BLAST [3] analysis. These alignments are opti-
mized manually and, after construction of a hidden Markov model (HMM), used
to search current sequence databases (Figure 4). Each sequence of the alignment is
also used as a query in a PSI-BLAST search. All sequences that are significantly sim-
ilar [as detected by HMM (E < 0.01) or PSI-BLAST (E < 0.001) searches] are added
to the alignment using the sequence-versus-HMM alignment method of HMMer.
Alignments are checked manually for potential false positives or misassembled
protein sequences derived from genomic sources. From this alignment, one of
each sequence pair sharing > 67% identity is deleted to reduce redundancy. The
resulting alignment is used as a starting point for a subsequent round of searches.
This iterative procedure is pursued until no new homologs are detected.

Searching Method To maximize the sensitivity of domain and repeat detection,
SMART uses hidden HMMer models as implemented in the HMMer software
package (http://hmmer.wustl.edu/). HMMER provides statistically sound E values,
thus giving a robust estimate of the significance of a domain hit. [The E value
represents the number of sequences having a score ≥X that would be expected
absolutely by chance. The E value connects the score (X) of an alignment between a
user-supplied sequence and a database sequence, generated by any algorithm, with
how many alignments having similar or greater scores would be expected from a
search of a random sequence database of equivalent size.] From a database search
with an HMM derived from the SMART alignment, the highest per-protein E value
of identified true positives (Ep) and the lowest per-protein E value of predicted true
negatives (En) are stored within the SMART database. Similarly, for two or more
repeats in a protein, the lowest E value of a false positive repeat (Er) is stored. To
ensure that the E value thresholds are independent of database size, the size of
the protein database used when deriving the thresholds is also recorded. SMART
predicts a domain homolog within any sequence that either has an E value < Ep or
else when Ep < E value < En and E value < 1.0. If no repeat threshold is defined, all
hits in a protein are reported; otherwise only those with E values < Er are shown.
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Fig. 4 SMART alignment representing the MAM domain.
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Domain Coverage Originally, SMART was intended as a tool for the analysis of
domains involved in eukaryotic signal transduction [76]; it was later expanded to
detect domains of extracellular proteins and bacterial two-component regulatory
systems. Gradually, various domains associated with DNA, RNA, chromatin, and
cytoskeletal functions have been added. Over the past few years, to augment the
SMART domain set, several semi-automatic search methods to identify new and
biologically interesting domains were developed. The current release of SMART
(version 4.0) includes nearly 700 protein domains.

3.3.2 SMART Relational Database System
The core of SMART is a relational database management system (RDBMS) powered
by PostgreSQL (http://www.postgresql.org/), which stores information on SMART
domains and the underlying nonredundant protein database.

Protein Database Basic components of SMART’s source sequence database are the
Swiss-Prot and SP-TrEMBL [10] protein sets, which have been used by SMART since
its inception. This set was recently expanded by inclusion of all proteomes available
in the Ensembl collection [17]. Sequences from all sources are compared, and a
nonredundant set of proteins with multiple identifiers per sequence is generated.
Sequences are retrievable and linkable via any of the original identifiers.

Domain Database The SMART domain database stores information on each do-
main’s presence in all proteins in the relational database. Each domain’s hit borders,
raw bit score, and Expect (E) value are recorded, together with the protein accession
code, description, and species name. In addition to domain information, other in-
trinsic features of each protein, such as transmembrane regions, coiled coils, signal
peptides, and internal repeats are included.

3.3.3 Web Interface
SMART provides a web-based interface to its underlying relational database and
HMMer-based search engine. There are two principal ways of using SMART: indi-
vidual sequence analysis and domain architecture analysis. Here we describe major
features of the current SMART (version 4.0).

Sequence Analysis SMART uses the CRC64 algorithm to calculate checksums
for all user-supplied sequences. If a matching checksum is found in the SMART
database, precalculated results are displayed. If there is no match, HMMer software
is used to scan the sequence with all SMART profiles. It is also possible to include
Pfam profiles in the search.

Resulting schematic protein representations (Figure 5) are easy to interpret:
a gray line shows the protein backbone, and different colored shapes represent
domains and features that are confidently predicted. If a user-supplied sequence
has a matching checksum identified, several important features become available
in the main results page.
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Fig. 5 SMART representation of mouse tyrosine protein kinase TEC
(ENSMUSP00000006349). Gray lines show the protein backbone, with
domains represented by different colored shapes. Intron positions are
indicated by vertical lines showing the amino acid location and the in-
tron phase. Intron positions are taken from Ensembl gene predictions.

Where available, intron positions are shown in schematic protein figures. For
proteins that match any of the Ensembl predictions, SMART shows intron positions
as vertical colored lines (Figure 5). This information is retrieved from a precalculated
mapping of Ensembl gene structures to protein sequences.

Extra information may be associated with the sequence. If multiple IDs are
associated with the same sequence, users receive a list of all IDs with links to
corresponding source databases. Since SMART incorporates Ensembl genomes,
users also receive a list of alternative splices of the gene encoding the analyzed
protein (if there are any). It is possible to either display SMART protein annotation
for any of the alternative splices or obtain a graphical multiple sequence alignment
of all of them (Figure 6).

Orthology information: SMART provides orthology information for all Ensembl-
predicted proteins. These relationships are distinct from those provided by En-
sembl. There are two separate sets of orthologs for each protein: 1 : 1 recip-
rocal best matches in other genomes and orthologous groups with reciprocal
best hits from all genomes analyzed (i.e., each of these proteins has exactly one

Fig. 6 SMART graphical alignment of alternative splice variants of
Mus musculus procollagen gene ENSMUSG00000026141. Domain
and intron positions are adjusted according to gaps in the alignment
(black boxes).
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Fig. 7 SMART representation of an orthol-
ogous group alignment. Orthologous pro-
teins from different species are aligned us-
ing Clustal W. Domains, intrinsic features,
and introns are mapped onto the alignment
with their positions adjusted according to
gaps (black boxes). This tool allows easy
visual comparison of intron positions and

their relations to protein features. Proteins
displayed: H. sapiens ENSP00000306893,
M. musculus ENSMUSP00000034225, Rat-
tus norvegicus ENSRNOP00000015337, Fugu
rubripes SINFRUP00000143191, Drosophila
melanogaster CG6827-PA, and Anopheles
gambiae, ENSANGP00000009390.

ortholog in all six genomes). Orthologous groups are displayed as graphical mul-
tiple sequence alignments (Figure 7). All orthology information is extracted from
all-against-all Smith–Waterman similarities for combined proteomes, using a pre-
viously described method [103].

Domain Architecture Analysis (Architecture SMART and Alert SMART) Architecture
SMART allows users to search for specific domain architectures using AND/NOT
logic. Since the SMART database includes intrinsic protein features as well as pre-
calculated results for Pfam [11] domains, these can be used together with SMART
domains. For example, it is possible to identify receptor tyrosine kinases by search-
ing for proteins that contain both a tyrosine kinase domain and a predicted trans-
membrane region (query “TyrKc AND TRANS”, Figure 8).

In addition to standard domain querying, SMART can be used to find proteins
based on gene ontology (GO [8]) terms associated with domains. Associations of
domains with GO are taken from Interpro [61]. Querying with GO terms is a two-
step process. In the first step, the user obtains a list of domains matching the
GO terms entered. After selecting the domains of interest from the list, proteins
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Fig. 8 Using intrinsic features in domain
architecture queries. The SMART database
was queried for all proteins containing a
tyrosine kinase domain and a transmem-
brane region (“TyrKc AND TRANS”), and
660 proteins were found,including the four

displayed here. The color of domain names
correlates with both subcellular localiza-
tion (blue = extracellular, black = intracellu-
lar)and catalytic activity (red = catalytically
active).

containing those domains are displayed. As with standard domain querying, results
can be limited to specific taxonomic ranges.

Finding Proteins with Similar Domain Architecture SMART can search for all pro-
teins that have the same domain architecture as the query (having all the domains
of the query protein in the same co-linear order) or that have an identical set of
domains (at least one of all domain types of the query protein, irrespective of order).
Identification of proteins having identical or near-identical domain architectures
as the query sequence may improve predictions of protein functions. This feature
also reveals, by using a taxonomic breakdown, the phyletic distribution of a given
architecture.

3.3.4 Application of SMART
Apart from its use as a web tool, SMART has been applied to large-scale annotation
projects, such as annotation of the human, mouse, and mosquito draft genome
sequences [48, 95, 103]. It was also used in the investigation of single domain
families in model organisms [40] and for the study of sequence conservation in
multiple alignments [67]. In conjunction with genomic data, SMART was used for
the study of conservation of gene (i.e., intron/exon) structure [13].

SMART has also been incorporated into other domain and protein family re-
sources that are used for the primary annotation of sequence databases. It is a com-
ponent database of Interpro [61], which contributes to the annotation of Swiss-Prot
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sequences [10], and of the Conserved Domain Database (CDD), which contributes
to the annotation of RefSeq sequences [70].

3.4
Other Features and Resources

3.4.1 Globular Repeats
Repeats can be hard to detect in protein sequences: most of them are short, and
their sequences are often highly divergent. The numbers of repeats in different
proteins are extremely variable. Finally, defining the first and last residues of a
repeat is more contentious than for a domain, since repeats are more prone to
circular permutation than are domains, particularly within closed structures [74],
and to partial truncation, resulting in non-integer repeat numbers.

Repeat detection methods are often incorporated into domain prediction
servers (for example, SMART uses the Prospero [60] program from the Ari-
adne package), but dedicated protein repeat prediction servers also exist, e.g.,
REPeats (http://www.embl-heidelberg.de/∼andrade/papers/rep/search.html [5]).
The GlobPlot method described in Section 4.1.4 is also fairly capable in detecting
repeats.

3.4.2 Domain Interaction Prediction
Although homology-based methods are a primary source of globular domain dis-
covery, protein-protein interactions are also being used and becoming more popular
for this purpose. One of the servers for exploration of such interactions is STRING.
The STRING database (http://string.embl.de/) is dedicated to proteomewide pre-
diction of protein-protein associations [94]. It is an integrated resource relying on
a wide range of experimental and computational datasets to make reliable interac-
tion predictions. It contains genomic context associations (derived from genome
comparisons), interactions derived from coexpression analysis, and various types
of high-throughput experimental data, all of which are stringently bench-marked
by using a common reference.

3.4.3 No Domains?
If no domains are found by, e.g., SMART or Pfam, this does not mean that your
favorite protein does not contain any higher fold or globular domains. Most often,
it simply indicates the presence of nonannotated domains, which of course has
potentially higher discovery value. However, several resources exist to help identify
potential domain boundaries and give hints as to the structure of what might be
hidden in the sequence.

Secondary Structure Prediction: Good Prediction of secondary structure is the most
mature of any structure prediction strategy, and accuracies of up to ∼80% can be
achieved [20, 21, 68]. An initial BLAST search to find homologous proteins is
important to get a better idea of the function and to build a sequence set for a
multiple alignment that can be used on secondary structure prediction servers
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such as PredictProtein (PROFsec, http://www.predictprotein.org/) and JPRED
(http://www.compbio.dundee.ac.uk/∼www-jpred/).

Tertiary Structure Prediction: Difficult Prediction of tertiary structure and folds is
still error-prone and difficult; however, having good secondary structure predictions
at hand can assist this analysis. Perhaps the best approach is to submit the sequence
to one of the homology-based prediction servers, such as the 3D-JURY meta-
server (http://bioinfo.pl/Meta/ [34]) or SWISS-MODEL (http://www.expasy.org/
swissmod/SWISS-MODEL.html [77]). Other resources can be found on the
websites for the evaluation competitions CASP (http://predictioncenter.llnl.gov/
casp5/Casp5.html) and CAFASP(http://bioinfo.pl/cafasp/).

Other Sequence Features: Narrowing Down Domain Boundaries Single transmem-
brane segments (TM1), coiled coils, and low-complexity regions are all incorporated
in the SMART server. Sometimes low-complexity regions are disordered (see Sec-
tion 4.1.3). Coiled coils are also disordered sequences; however, they behave like
globular units after the coiled-coil structure is formed, which is a very clear example
of disorder–order transition.

At EMBL in Heidelberg we have two additional methods that are useful in
the definition of potential domain boundaries: DomCut [84] and GlobPlot [52],
see Section 4.1.4. Another resource for potential domain boundary prediction is
DomPred (http://bioinf.cs.ucl.ac.uk/dompred/ [58]).

Many proteins are entirely and natively unstructured and without globular do-
mains, and the rest of this chapter is dedicated to the analysis of this part of protein
space.

4
Analyzing Nonglobular Protein Segments

Since most attention in assigning function to proteins has been on globular do-
mains, there are relatively few tools for analyzing the nonglobular protein space.
Structural biology has tended to avoid unstructured proteins and regions (e.g., by
removing them in recombinants), which has led to a skew toward globular proteins
in structural datasets.

However, this neglect is not confined to structural biology – bioinformatics has
also tended to keep nonglobular function prediction under the academic carpet. Al-
though resources are readily available for revealing globular domains in sequences,
until recently there has not been any comprehensive collection of short functional
sites/motifs comparable to the globular domain resources. Yet these are just as
important for the function of multidomain proteins. Indeed, it is impossible for a
researcher to find a list of currently known motifs – going through the literature
to retrieve them is impractical without foreknowledge in more areas than any one
person has. This neglect is primarily due to the fact that short sequence motifs are
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statistically insignificant and difficult to handle compared to domains for which
accurate sequence models can be produced.

4.1
Unstructured Regions: Protein Disorder

The approach to finding functional sites is fundamentally different from the one
described above for globular domains. Since linear motifs are often shorter than 10
amino acids, they overpredict massively even if they are described by using artificial
neural networks or other sensitive probabilistic methods. However, linear motifs
are context-dependent in the sense that they are functional only if they are exposed
for interaction with a modular domain or in the right cell compartment. Structurally
they prefer to be in nonglobular or disordered regions of the protein, both of which
can be detected fairly accurately. A typical functional site is shown in Figure 9;
notice the linear unstructured and flexible protein backbone, a requirement for the
CSK kinase to be able to modify the tyrosine.

In the following we discuss how to find potentially nonglobular areas, including
those that appear structurally disordered, and how to predict functional sites in
them.

Fig. 9 The C-terminal CSK Tyr-
phosphorylation site in Src (PDB: 1fmk)
in the closed conformation bound to the
SH2 domain. This linear motif (red) shows
the general features of an ELM: it is linear
in sequence and structure space. The se-

quence of the instance of this functional
site is TEPQYQPGE. In the ELM resource
this is called the MOD TYR CSK func-
tional site and is described by the pattern
[TAD][EA].Q(Y)[QE].[GQA][PEDLS]. The im-
age was created with PyMOL (Table 2).
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Recently, it has become possible to analyze natively unstructured proteins by
methods such as NMR. Besides their high content of functional sites, disordered
and nonglobular regions are exciting for many other reasons.

4.1.1 What Role Does Protein Disorder Play in Biology?
Target Selection In the post-genomic era, discovery of novel domains and func-
tional sites in proteins is of growing importance. One focus of structural genomics
initiatives is to solve structures for novel domains and thereby increase the coverage
of fold and structure space [14]. During the target selection process in structural
genomics/biology, it is important to consider intrinsic protein disorder, because
disordered regions (at the N and C termini or even within domains) often lead to
difficulties in protein expression, purification, and crystallization. It is therefore
essential to be able to predict which regions of a target protein are potentially
disordered/unstructured.

IDPs (Intrinsically Disordered Proteins) Although IDPs (also known as intrinsi-
cally unstructured proteins) are under-researched, an increasing number are being
found. These are proteins or domains that, in their native state, are either entirely
disordered or contain large disordered regions. More than 100 such proteins are
known, including Tau, prions, Bcl-2, p53, 4E-BP1, and HMG proteins (see Figure
14) [7, 47, 56, 90, 91].

Protein disorder is important for understanding protein function as well as
protein folding pathways [67, 92]. Although little is understood about the cellular
and structural meaning of IDPs, they are thought to become ordered only when
bound to another molecule (e.g., CREB–CBP complex [72]) upon changes in the
biochemical environment [27, 29].

Function of Disorder and IDPs The current view on protein disorder is that it
allows for more interaction partners and modification sites [53, 90, 99]. However,
we have not been able to confirm this hypothesis by analyzing a large interaction
dataset (unpublished results). This might be because such datasets are enriched in
nontransient interactions, but interactions carried out by disordered proteins are
transient.

Perhaps disordered proteins have evolved to provide a simple solution to having
large intermolecular interfaces while keeping smaller protein, genome, and cell
sizes [36]. It has been proposed that having several relatively low-affinity linear
interaction sites allows for a flexible, subtle regulation as well as accounting for
specificity and cooperative binding effects [31]. In light of the modular model
described in Section 2.1, we can see how these sites can be used in a combinatorial
manner to generate a very large set of potential interaction environments.

Protein Disorder and Disease Structural disorder in proteins is now known to play a
central role in diseases mediated by protein misfolding and aggregation [12, 45, 78].
Amylogenic diseases such as Alzheimer’s, Type II diabetes, and BSE are thought to
be related to the occurrence of short linear motifs in unfolded regions. These motifs
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are important for initiation of the formation of the amyloid fibers that cause great
harm to the cellular environment, particularly in brain tissue. There are several
proposed peptide models for these motifs, and the structural context in which they
occur are under investigation [24, 55, 63, 83].

Other diseases such as Parkinson’s, Huntington’s, and serpinopathies are related
to misfolding of proteins. The understanding of protein misfolding is related to
analysis of the unstructured ensemble or the unfolded state of a polypeptide. This
state can be analyzed in natively disordered proteins [30].

How does one characterize protein disorder and nonglobular regions? The field
of protein disorder studies has, so far, failed to reach any agreement on this.

4.1.2 What is Protein Disorder?
No commonly agreed definition of protein disorder exists. The thermodynamic
definition of disorder in a polypeptide chain is the random-coil structural state. The
random-coil state can best be understood as the structural ensemble spanned by a
given polypeptide in which all degrees of freedom are used within the conforma-
tional space. However, even under extremely denaturing solvent conditions, such as
8 M urea, this theoretical state is not observed in solvated proteins [46, 66, 89]. Pro-
teins in solution thus seem to always retain a certain amount of residual structure.

Protein disorder is observed by a variety of experimental methods, such as X-ray
crystallography; NMR, Raman, and CD spectroscopy; and hydrodynamic measure-
ments [29, 82]. In vivo studies of disorder are possible with NMR spectroscopy
on living cells (e.g., anti-sigma factor FlgM [22]). Each of these methods detects
different aspects of disorder, resulting in several operational definitions of protein
disorder (see [90] for a review).

Regions without regular secondary structure can be predicted by the NORSp
(nonregular structure) server [53]; however, as the authors point out, such regions
are not necessarily disordered. Structures such as the Kringle domain (PDB: 1krn)
are almost entirely without regular secondary structure in their native state, but
they still have tertiary structure in which the basic building block is coils. These
loopy proteins are not necessarily IDPs, since they can still form a well defined
globular tertiary structure.

In our work we have used four definitions of protein disorder:

Ĺ Loops/coils as defined by DSSP [44]. Residues are assigned to one of several
secondary structure types. For this definition we consider residues in an α-
helix (H), 310 helix (G), or (β-strand (E) to be ordered and all other states (T,
S, B, I) to be in loops (also known as coils). Loops/coils are not necessarily
disordered (e.g., turns); however, protein disorder is found only within loops.
It follows that one can use loop assignments as a necessary but not sufficient
requirement for disorder; a disorder predictor based entirely on this definition is
thus promiscuous.

Ĺ Hot loops constitute a refined subset of the above: namely, those loops having a
high degree of mobility as determined from Cα temperature factors (B factors).
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It follows that highly dynamic loops should be considered disordered. Several
attempts have been made to try to use B factors for disorder prediction [15, 28,
32, 93, 104], but there are many pitfalls in doing so, because B factors can vary
greatly within a single structure due to the effects of local packing and structural
environment. Recent progress in deriving propensity scales for residue mobility
based on B factors [81] has encouraged us to use B factors for defining protein
disorder. The details for hot loops can be found in the methods part of [51].

Ĺ Missing coordinates/remark465 in X-ray structure, as defined by remark465
entries in the PDB. Nonassigned electron densities most often reflect intrinsic
disorder and were used early, for disorder prediction [50].

Ĺ Russell–Linding propensities are parameters based on the hypothesis that the
tendency for disorder can be expressed as P = RC – SS where RC and SS are the
propensities for a given amino acid to be in random coil and regular secondary
structure, respectively. This scale was defined during the development of the
GlobPlot predictor described in Section 4.1.4.

Figure 10 shows the disorder propensities for each amino acid by our four defini-
tions of disorder. A more detailed discussion of these values can be found in [51],
but in general, hydrophobic residues promote order according to all definitions of

Fig. 10 Propensities of the amino acids to
be disordered, according to the definitions
used in DisEMBL and GlobPlot (sorted by
hot loop preference). This scale directly re-
flects the datasets used for training; how-
ever, it is only a rough approximation of
what the DisEMBL neural networks use
in predicting disorder. Error bars corre-
spond to the 25th and 75th percentiles as
estimated by stochastic simulation. The

Russell–Linding scale is an absolute scale.
Methionine suffers a bias in the remark465
dataset for at least two reasons: (1) often
the N-terminal methionine is missing; and
(2) some structures are solved using se-
lenomethionine derivatives for phasing,
which can lead to deletion of the residue
in the PDB entry. The same bias is seen in
([29], Figure 10).
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disorder. Disorder-promoting residues include proline, lysine, serine, threonine,
and methionine.

4.1.3 Methods for Finding Protein Disorder
Several other attempts have been made to predict disorder. Perhaps the earliest
were methods of finding regions of low complexity. Although many such regions
are structurally disordered, the correlation is far from perfect, because regions of
low sequence complexity are not always disordered (and vice versa) [27]. Likely
the strongest evidence for this correlation comes from the fact that low-complexity
regions are rarely seen in protein 3D structures [75]. Methods to predict low com-
plexity, like SEG [98] and CAST [69], are thus often used for this purpose. Methods
using hydrophobicity can also give hints about disordered regions, because low-
complexity regions are typically exposed and rarely hydrophobic.

The first tool designed specifically for prediction of protein disorder was PONDR
(predictor of naturally disordered regions, http://www.pondr.com [32, 33, 73]). It
is based on artificial neural networks. PONDR is, however, not freely accessible to
academics. Refer to [59] for a recent evaluation of disorder prediction (DisEMBL
was published after CASP5).

Prediction of protein tertiary structure may be an alternative route to disorder
prediction, although such methods are computationally intensive and error-prone.
Moreover, such methods are usually designed to predict the structure of globular
domains, and their behavior with other sequences can be unpredictable.

At the EMBL in Heidelberg we have developed methods for finding unstructured
regions from sequence data alone. These tools were primarily developed for use
in the ELM project to help find regions potentially containing functional sites.
However, these tools are now being used by several structural genomics initiatives
and laboratories around the world who are either studying IDPs or trying to optimize
their recombinant protein expression vectors by cutting out disordered segments.

4.1.4 GlobPlotting
GlobPlot was invented specifically to aid the ELM project; however, it proved to be of
much wider interest [52]. From the beginning we wanted a graphical tool that could
generate easy-to-interpret plots of the tendency within a sequence for structured or
lack of structure. The basis for GlobPlot was the Russell–Linding scale mentioned
earlier in Section 4.1.2. The combination of random coil and secondary structure
in the Russell–Linding scale enhanced the discrimination of the graphs and was
the key factor in the success of this scale at detecting both disorder and globular
packing.

GlobPlot is not intended to be a competitor in secondary structure prediction,
because it cannot give the same level of detail as can be obtained from secondary
structure prediction based on multiple alignment. GlobPlot is an ab initio method,
i.e., it requires only one sequence and can therefore be applied to novel sequences
having no homologs, i.e., it does not use multiple alignment. The basic algorithm
behind GlobPlot is beautifully simple and very fast: each amino acid ai has a defined
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propensity P(ai)R (see Russell–Linding in Figure 10). Given a protein sequence of
length L, we define a sum function Dis(ai) as follows:

Dis (ai )=
L∑

j=1

P (ai )

where P(ai) is the propensity for the ith amino acid. The GlobPlot webserver plots
the function, and the graphs are referred to as globplots. Before plotting, the digital-
smoothing Savitzky-Golay algorithm is used to reduce noise on the curve.

Analyzing a GlobPlot Reading globplots is fairly easy, but different from, e.g.,
hydropathy plots, in that globplots are cumulative-sum curves rather than derivative
curves. Because GlobPlot plots this running sum, the graph is analyzed by looking
at the slope. The numbers on the ordinate do not matter, they equal the running
sum, and we are interested only in whether or not a given segment of the graph
is disordered. The latter is seen by the decrease or increase in the slope, because
that is how the Russell–Linding scale works: negative values correspond to ordered
residues, and positive values indicate disorder-promoting amino acids.

We designed GlobPlot like this because we think it results in profile-like, intuitive
plots. In particular, we wanted to avoid a high-variation curve such as the derivative
curve. The globplot in Figure 11 is a good example of one of these profile-like
curves: the GlobPlot plot for mucin predicts that the central part of the protein
is almost completely disordered (using the Russell–Linding disorder definition) –
this is probably why this protein is so slimy.

Domain detection with GlobPlot is as easy as finding protein disorder, since
both features are shown in the plot. To help you to navigate and understand the
plots, the webserver overlays the graph with any predicted SMART domains. In
domain hunting situations, you would look for downhill regions in the graph. As
seen in Figure 12, GlobPlot can detect potential domains: notice the downhill slope
whenever a domain is found by SMART/Pfam. GlobPlot often detects additional
sequence to be ordered, this is because SMART and Pfam use only the most con-
served sequence part of a domain to generate their hidden Markov models for the
domain. This indicates that GlobPlotting is useful for domain boundary definition.

4.1.5 Prediction of Multiple Types of Disorder with DisEMBL
The performance of GlobPlot encouraged us to refine our approach and predict
disorder in a more traditional biocomputational manner by training artificial neural
network predictors for the various definitions of disorder mentioned above. This
work led to the DisEMBL disorder predictor ensemble.

DisEMBL is a computational tool for prediction of disordered/unstructured re-
gions within a protein sequence [51]. DisEMBL currently provides three alternative
disorder definitions: hot loops, coils, and missing coordinates as defined in Section
4.1.2. The coils predictor is used primarily as a filter to require disorder to be within
coil-predicted regions (see Section 4.1.2). DisEMBL is a highly accurate predictor,
predicting more than 60% of hot loops with fewer than 2% false positives [51].
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Fig. 11 Globplot of human mucin 5 pro-
tein (Swiss-Prot: MU5B HUMAN). Most
of this slimy protein is highly disordered.
Since GlobPlot plots a running sum of the
propensity to disorder, the graph is ana-
lyzed by looking at its slope. The numbers

on the ordinate axis do not really matter,
it is the uphill or downhill tendency that
should be read. Referring to Figure 10 in-
dicates that disorder-promoting propensi-
ties are positive, so ‘uphill’ on the graph is
equivalent to disorder.

Hot Loops ‘Hot loops’ is a novel definition of disorder based on X-ray data. We
think that it will prove difficult to pull out a much more precise definition of disorder
based on crystallographic data. An example of hot loop results is shown in Figure
14, where we mapped the probabilities shown in Figure 13 onto the structure of
nonhistone chromosomal protein 6A from yeast. It is remarkable that a definition
based on X-ray data can predict so well for NMR structures, arguing that this novel
definition of disorder is relevant. We also showed this correlation earlier, as well
as a comparison of the correlations between our alternative definitions of protein
disorder [51].

Using DisEMBL DisEMBL is freely available via a web interface (http://dis.
embl.de/) and can be downloaded for use in large-scale studies. The web interface
is fairly straightforward to use, you can submit a sequence or enter the Swiss-
Prot/SWALL accession (e.g., P08630) or entry code (e.g., HMG1 HUMAN). The
server fetches the sequence and description of the polypeptide from an ExPASy
server using Biopython.org software. The probability of disorder is shown graph-
ically, as illustrated at Figure 13. The random expectation levels for the different
predictors are shown on the graph as horizontal lines, but should merely be consid-
ered absolute minima. The default parameters are set for optimal prediction and
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Fig. 12 Globplot of human CREB-binding
protein (CBP HUMAN). About half of the
sequence appears to be disordered, with
long flexible regions observed at the N and
C termini. The flexible region just after the

KIX domain might be important for induced
binding of the pKID domain of CREB to
CBP [23, 72]. For further discussion of dis-
order in CBP/CREB see Wright et al. [99].

should be changed only in rare situations. On-line documentation of the various
settings is provided at http://dis.embl.de/help.html. If the query protein sequence
is very long, > 1000 residues, you can download the predictions and use a local
graphing/plotting tool such as Grace or OpenOffice.org to plot and zoom the data.
A future version of DisEMBL may include a web applet for interactive plotting and
zooming of the graphs.

GlobPlot and DisEMBL The GlobPlot algorithm is very simple and intuitive, which
is appealing. Although it was originally designed for prediction of protein disorder,
the Russell–Linding propensity scale functions just as well for detection of domain
boundaries, repeats, and other globular features. The Russell–Linding scale and the
SMART domain overlay feature are unique to GlobPlot. DisEMBL is more accurate
than GlobPlot in coil prediction, which is related to the Russell–Linding scale. It
furthermore provides the novel hot-loop definition of disorder. The two methods
complement each other, since they approach disorder prediction differently. In
general, we urge you to submit your sequences to both tools.

4.1.6 Design of Protein Expression Vectors
As mentioned earlier, protein disorder is related to problems during pro-
tein expression, purification, and crystallization. Other tools such as TANGO
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Fig. 13 Sample output from the Dis-
EMBL web server, showing predictions for
yeast nonhistone chromosomal protein 6A
(high mobility group protein, Swiss-Prot:
NHPA YEAST). The green curve shows the
predictions obtained for missing coordi-
nates, red for the hot loop network, and
blue for coils. The horizontal lines corre-
spond to the random expectation level for

each predictor: for coils and hot loops the
prior probabilities were used, and a neu-
ral network score of 0.5 was used for re-
mark465. From this plot it is seen that the
N-terminal tail of the protein is especially
predicted to be disordered. See Figure 14
for a mapping of the hot loop predictions
onto the structure of this protein.

Fig. 14 DisEMBL hot loop predictions
mapped on the NMR structure of nonhi-
stone chromosomal protein 6A (high mo-
bility group protein, PDB: 1cg7; model 1,
Swiss-Prot: NHPA YEAST). The predicted
probabilities are indicated with a color scale

going from blue to red, where red corre-
sponds to the most likely disordered re-
gions and blue to ordered regions. The un-
structured tail clearly shows the highest dis-
order scores (see Figure 13). Surface plot
generated with VMD (see Table 2).
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(http://tango.embl.de/) deal with protein cross-beta aggregation which is differ-
ent from the disorder in solvated proteins that our tools predict.

We believe that identification of potential disordered regions should provide
a good basis for setting up expression vectors and/or comparing the data with
obtained structural data. However, currently we cannot assess which of the defini-
tions of disorder is most appropriate for design of protein expression vectors. We
thus strongly encourage feedback on successes and failures in using DisEMBL for
expression and structural analysis of proteins.

4.2
Function Prediction for Nonglobular Protein Segments

Having identified candidate unstructured regions, one can start searching for func-
tion in them. Most functions correlate with short linear peptide motifs that are used
for cell compartment targeting, protein-protein interaction, regulation by phospho-
rylation, acetylation, glycosylation, and a host of other post-translational modifica-
tions. See Figure 15 for an overview of the many functions these sites perform. The
number of known categories of functional sites has increased dramatically in the
past few years, and it is obvious that there are more to be discovered. These sites
are usually short and often reveal themselves in multiple sequence alignments
as short patches of conservation, leading to their definition as linear motifs. In
addition to occurring outside globular domains, some sites, e.g., phosphorylation
sites, are often found in exposed flexible loops protruding from globular domains.

Fig. 15 Main classes of functional sites. Functional sites are as var-
ied and numerous as domains are. On a proteome level we expect
at least five sites per protein, resulting in about 150 000 instances in
the human proteome. This indicates the presence of a gigantic and
complex interaction and regulatory system.
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Considering the abundance of targeting signals and post-translational modification
sites, it is reasonable to assume that there are more functional sites than globular
domains in a higher eukaryotic proteome.

4.2.1 Available Resources
ELM is the largest collection of linear motifs, followed by Scansite and PROSITE
[64, 80, 101]. Scansite is a very capable resource focusing on cell signaling. It com-
plements ELM in using position-specific scoring matrices (PSSMs) for prediction,
which are more sensitive than the regular expressions ELM uses. However, Scansite
does not provide an annotated database similar to ELM.

A series of individual predictors of functional sites can be found at http://
www.cbs.dtu.dk/services/ which is hosted by the Center for Biological Sequence
Analysis in Denmark. The CBS focuses on providing high-performance neural
network predictors but without any annotated knowledgebase interface, taking a
complementary approach to the other resources.

The PROSITE database has collected a number of linear protein motifs, repre-
senting them as regular expressions. PROSITE patterns have been very useful but
suffered from severe overprediction; more recently the database has emphasized
globular domain annotation at the expense of linear motifs.

Also of interest are protein interaction databases such as BIND and DIP [9,
100]. More informative protein interaction databases that store known instances of
linear motifs include MINT [102] and Phospho.ELM at http://phospho.elm.eu.org/.
Databases of instances are not directly useful for prediction but provide valuable
data-mining resources.

It was recently demonstrated that short functional sites or protein features are
crucial for the classification of protein function [41]. The Protfun method is an
ab initio method for prediction of higher functional classes based on sequence
features alone [42].

4.3
The Eukaryotic Linear Motif Resource: ELM

In this section we describe the ELM resource in detail, since it is the largest resource
for linear motifs.

The Eukaryotic Linear Motif server (http://elm.eu.org/ [71]) is a new bioinfor-
matics resource for investigating candidate short functional motifs in eukaryotic
proteins. Some of the concepts used within ELM are defined in Table 1. An example
of the concepts used in practice can be seen in Figures 16 and 17.

Linear motifs are short (usually < 10 amino acids) and therefore difficult to evalu-
ate, since the usual significance assessments are inappropriate. Therefore, the ELM
resource deploys logical context filters to eliminate false positives. The prediction
strategy ELM uses is what we call knowledge-based decision support (KBDS). The
basic idea is that, since we cannot discriminate ELMs based on sequence match-
ing, we can use a knowledge base of contextual information regarding functional
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Table 1 Definitions of concepts used in the ELM resource. Functional sites are, as opposed
to, e.g., active sites, short and linear in sequence and structure space. In the ELM resource
we describe functional sites as linear motifs. Here, the linear motif is shown as a regular
expression or pattern, but it could as well have been another type of sequence model, e.g., a
hidden Markov model

Concept Definition Example

A functional site A set of short linear (sub)sequences
that can be related to a molecular
function

LIG RBBD: Rb pocket
interacting sequence

An ELM The common pattern of a set of
linear (sub)sequences that can be
related to a molecular function

[LI].C.[DE]

An ELM instance An instance of an ELM in a
particular polypeptide

RBB1 HUMAN: LVCHE

sites and ELMs to filter out false positives. This knowledge base is created/curated
manually from the scientific literature. Currently, KBDS filters are in place for cell
compartment, globular domain clash, and taxonomic range. In favorable instances,
the filters can reduce the number of retained matches by an order of magnitude or
more.

Fig. 16 LIG RBBD is a functional site responsible for interaction with
retinoblastoma (Rb) family proteins. Rb proteins are known for repres-
sion of E2F proteins, which are required for transcription of proteins
important in the cell cycle. The figure shows the SV40 large T antigen
interacting with the Rb pocket (PDB: 1gh6).
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Fig. 17 The location of the instance (LFCSE) of LIG RBBD in the
SV40 large T antigen protein is C-terminal to the DnaJ globular do-
main.

4.3.1 ELM Annotation – ‘Site seeing’
All data input is by hand curation, performed by trained molecular biologists.
Annotating each ELM is called ‘Site seeing’ and includes the processes shown in
Figure 18. To promote interoperability with other bioinformatics resources, ELM
uses three public annotation standards. Gene ontology (GO) identifiers are used
for cell compartment, molecular function, and biological process [8, 39], and the
NCBI taxonomy database identifiers [97] are used for taxonomic nodes at the apex
of phylogenetic groupings in which an ELM occurs. Annotations of ELM instances
are assigned ontology terms from the Proteomics Standards Initiative Molecular
Interaction ontologies for evidence methods (HUPO.org). In the future the ELM
resource will be able to report known instances of ELMs with details about what
kind of experiments were performed to show the instance, with links to the relevant
literature.

The motif patterns are currently represented as POSIX regular expressions (us-
able in the Python and PERL languages), analogous to PROSITE patterns, but
with a different syntax. For example, the FxDxF motif, which is responsible for
the binding of accessory endocytic proteins to the alpha subunit of adaptor protein
complex AP-2, has a consensus sequence of F-x-D-x-F and is written F. D. F. Linear
motifs in ELM will in the future include motif descriptions according to the Seefeld
convention nomenclature for linear motifs (see [1]).

In the future, ELM might incorporate HMMs or other sensitive search methods;
nevertheless, linear motifs will continue to overpredict and require alternative
approaches for reducing the levels of false positives.

4.3.2 ELM Resource Architecture
The core of the ELM resource is a relational database, powered by PostgreSQL,
storing data about linear motifs. Figure 19 outlines how the ELM server is imple-
mented. The user submits a protein sequence to the server and receives a list of
matching ELMs that have been filtered to remove false positives (it may naturally
include false negatives and residual false positives). Matched motifs are usually not
statistically significant, and overprediction occurs despite filtering; hence matches
should be considered to represent potential true instances of functional sites and
should be used as guides to experimental determination.



28 Computational Analysis of Modular Protein Architectures

Fig. 18 The flow of the ‘siteseeing’ process typically involves extensive
literature searches, BLAST runs, multiple alignment of relevant protein
families, perusal of Swiss-Prot and other online databases, and, where
practical, discussion with experimentalists from the field. The empty
box symbolizes additional future strategies.

4.3.3 Knowledge-based Decision Support (KBDS): ELM Filtering
Sequence-matching methods find many false – but apparently plausible – instances
of ELMs that somehow are not recognized by their cognate binding/modification
domains. There are two explanations for this:

Ĺ One obvious reason why a sequence that matches a motif is not a true functional
site is that the motif does not fully and accurately represent the functional site.
This can partly be solved by deploying more sophisticated sequence models such
as PSSMs or artificial neural networks, an approach used by Scansite and CBS.

Ĺ Another reason is that the sequence matches (potential ELM instances) occur
in an irrelevant context. They may match a sequence from a wrong cellular
compartment or from a species that does not use this functional site. As we have
seen, the structural context is also of great importance for linear motifs to be
reachable so as to be functional.
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Fig. 19 Flowchart of the ELM server. Dashed boxes indicate the
four stages from input to results. As the server is further developed,
more filters will be added to allow more query-dependent data to be
retrievable.

It is possible to develop context filters that remove such false positives. In ELM
we do most of this inside the knowledge database that the ‘siteseeing’ process is
building. The ELM database is designed to accommodate these types of filters or
KBDS modules.

Currently, three filters are installed on the ELM server. These filters are not
completely accurate and introduce false negatives occasionally, although we try to
avoid this as much as possible. In general, the approach in ELM is to predict as few
false positives as possible, but it is even more important to avoid false negatives.

Cell Compartment Filter In ELM every linear motif is annotated with GO terms for
the set of cell compartments in which it is known to function. For example, KDEL
is a signal for retention of the host protein by the endoplasmic reticulum, whereas
the SUMO site applies to proteins in the nucleus and the PML body. The user
specifies the compartments in which the query protein functions, and all matches
for ELMs not found in these compartments are filtered out. In the future ELM may
support prediction of compartments using LOC3D [62].
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Globular Domain Filter: A Two-track Filtering Strategy Globular domains identified
with the SMART and Pfam (domain subset) resources are used for filtering out
ELMs. This filter has two tracks:

Ĺ a domain filter,
Ĺ an ELM rescue or reinstate module.

The domain filter works simply by removing all ELMs within the boundaries
of the SMART/Pfam domains matching the same sequence, since they are false
positives. The primitive assumption here is that sites within globular units are not
accessible and therefore not functional, clearly an oversimplification.

ELMs can occur inside certain domains, e.g., the internal tyrosine phosphoryla-
tion sites in the active loops of tyrosine kinase domains, as is described in Section
2.1. This later group of ELMs are to a certain extent being ‘rescued’ by the ELM
rescue module, i.e., for some ELMs certain SMART/Pfam domains are simply not
used for filtering in the domain filter.

Given the limited accuracy of the domain filter, the unfiltered results are provided
on the results front page. In many situations, users can investigate surface accessi-
bility by examining an available 3D structure, by using a good-quality 2D structure
prediction [20, 21, 68], or perhaps by using a homology modeling server such as
SWISS-MODEL or the 3D-JURY metaserver [34, 77]. We are currently developing
better domain filters, e.g., using surface accessibility from known structures to
discriminate false from true positives. A good example of how this might work is
shown in Figure 20.

Fig. 20 The V-1 Nef protein (magenta) in
complex with wild-type Fyn SH3 (red) do-
main (PDB: 1avz) contains two potential
SH3 ELMs. Residue numbers are given as
well as the accessibility (acc) of the high-

lighted fragments. The yellow sequence is
the only one that binds to the Fyn partner.
The cyan putative ELM is covered by a loop
and has a accessibility of 81% (compared to
the 98% of the true binding domain).
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Taxonomic Filtering Some types of functional sites are found in all eukaryotes,
e.g., the ER retention signal KDEL is universal. But others are restricted to specific
eukaryotic taxa. Perhaps most strikingly, the large receptor tyrosine kinase multi-
gene family is found only in metazoa. Each ELM is annotated with one or more
NCBI taxonomy nodes to indicate its known phylogenetic distribution. The user
provides the query species, and all ELMs that are not assigned to its lineage are
filtered out.

4.3.4 Using ELM
The public ELM webserver allows you to retrieve filtered as well as unfiltered raw
results. This approach should encourage you to think critically about ELM server
results. Figure 21 shows the ELM server output using the human Src sequence as
a query. This example indicates the potential of the KBDS approach for improving
motif searches. A pipeline interface to ELM prediction for use in proteome analysis
is currently being developed and implemented; this pipeline and the results will be
made available as soon as possible.

The predictive power of the ELM resource can be enhanced by harnessing it
to other data, including experimental results. For example, many protein kinase
recognition sites are among those which severely overpredict. If a protein is known

Fig. 21 Sample output from the ELM
server. The query sequence was Src (Swiss-
Prot: SRC HUMAN). The surviving ELMs
are shown in blue, and the motifs that have
been filtered out are shown in grey. This fig-
ure illustrates only how the globular domain
(green) filter works: of the 103 ELMs in the
resource at the time of writing, 27 match
the sequence, but two are removed by the
species filter, seven by the compartment fil-

ter, and five by the SMART/Pfam domain fil-
ter. Of the remaining 14 ELMs that survive
the filtering, six are known to be true, and
two are false negatives, i.e., not predicted
by ELM (the C-terminal SH2 ligand and the
autophosphorylation site within the tyrosine
kinase domain; compare with Figure 1). The
functionality of the ELM rescue module is
not shown in this figure.
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Table 2 Some resources referred to in this chapter. For more information please see the
individual websites

Resource Function classes htpp://

SMART globular modular domains smart.embl.de
Pfam globular modular domains www.sanger.ac.uk/Software/Pfam/
Interpro Globular domain meta server www.ebi.ac.uk/interpro/
CDD globular modular domains web.ncbi.nlm.nih.gov/Structure/odd/

odd.shtml
PROSITE Domain signatures and a few

linear motifs
www.expasy.ch/sprot/prosite.html

PredictProtein Secondary structure prediction www.predictprotein.org

ELM Functional sites, ELMs, linear
motifs

elm.eu.org

PyMOL Very nice and easy to use
molecule viewer and renderer

pymol.sourceforge.net

VMD Feature rich molecule viewer www.ks.uiuc.edu/Research/vmd/

Scansite Phosphorylation and signaling
motifs

scansite.mit.edu

Protfun Enzyme categories and higher
functional classes

www.cbs.dtu.dk/services/ProtFun

NetNglyc N-glycosylation motifs www.cbs.dtu.dk/services/NetNGlyc

PredictNLS Nuclear localization signals cubic.bioc.columbia.edu/predictNLS

SignalP Cleavage sites &
signal/non-signal peptide
prediction

www.cbs.dtu.dk/services/SignalP

PSORT Protein sorting signals psort.nibb.ac.jp

Sulfinator Tyrosine sulfation motifs us.expasy.org/tools/sulfinator

GlobPlot Protein disorder and globularity globplot.embl.de

DisEMBL Protein disorder dis.embl.de

GO biological function, component
and process

www.geneontology.org

Ensemble Genome browsing www.ensembl.org

Phospho.ELM Instances of Ser/Thr/Tyr
phosphorylation

phospho.elm.eu.org

Perl Script oriented language widely
used in bioinformatics

www.perl.com

Python Highly object oriented language
designed for large projects

www.python.org

HMMER Hidden Markov Model software
suite

hmmer.wustl.edu

Biopython Bioinformatics modules for perl www.biopython.org

Bioperl Bioinformatics modules for
Python

www.bioperl.org
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not to be phosphorylated, kinase sites can all be ignored; but if it is known to
be phosphorylated, then the kinase-site matches can be targeted for experimental
testing. Mass spectrometry can be a useful tool for revealing post-translational
modifications. ELM can provide synergism with appropriate experiments and can
help in mapping out a research program. In this way, the ELM resource should
become increasingly useful to the research community

5
URLs

In Table 2 we have listed some URLs we thought might be useful for you
to explore. Many more links can be found in the annual database (http://nar.
oupjournals.org/content/vol31/issue1/) and webserver (http://nar.oupjournals.
org/content/vol31/issue13/) open access issues of Nucleic Acids Research.

6
Conclusions

We hope that you now have a pretty clear idea of how to approach the analysis of
your favorite modular protein. In this chapter we have not discussed all available
resources for analysis of proteins, we apologize to the authors of these resources.

The mapping of globular domains should be considered mature – methods such
as Pfam and SMART are highly reliable for determining potential domains in a
sequence. The prediction of functional sites is a much younger field, although
advancements have been made with nonsequence approaches such as the KBDS
system in ELM.

The paradigm behind this chapter and the modular model of protein function
is that sequence determines structure, which again determines function. This is
clearly true in many instances; however, like any dogma, it is ultimately wrong
and misleading. Our view of protein function is still very primitive. We expect the
modular model to be enveloped by a more holistic model.

It does indeed seem as if nature is presenting molecular functions in two modes:
structured domains that are folded and in which the fold/structure determines
the function of the domain/protein, and an unstructured mode like the one we
see for ELMs. These are modular units which seem to behave like autonomous
bit/information strings carried within the host protein to accommodate certain
functions or tuning of the host structure – they are themselves unstructured and
only their sequence determines their function.
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