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ABSTRACT

The knowledge on the gene content of any organism is essential for the
study and understanding of its biology. The recent sequencing of large and
complex genomes hasforced the scientific community to develop orimprove
computer programs in order to identify such genes. These algorithms are
based on theidentification of characteristic patterns of gene-rel ated elements
(such as promoters, splice sites, polyadenilation signals, and others) and
present an estimated success rate of 80%. But, neither these programs nor
their eval uation procedures normally takeinto consideration the presence of
non-functional gene copies in the genome. These dispensable gene copies,
known as pseudogenes, areformed either by retrotransposition or by tandem
duplication. In some casesthey aredifficult to differentiate by using standard
procedures since they share many sequence characteristics with their
corresponding functional parental genes. The only criteria used so far to
identify such non-functional elements depends on the detection of either
disruptionsin theopen reading frameor any typical sign of retrotransposition.
This leads to misclassification of some genes. In order to overcome this
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situation, we have developed an independent strategy that is capable to
differentiatemany functional from non-functional sequences. This procedure
takesadvantageof thedifferent sel ectiveconstrainsassociatedto pseudogenes
and genes. Using thismethod we estimated that the human genome contains
40000 pseudogenes, doubling current approximations. Weare al so proposing
an error rate of 23%in standard procedures of geneannotation regarding the
classification of genes and pseudogenes.

INTRODUCTION

Thedevelopment of sophisticated techniquesthat permit direct manipulation
of DNA haschanged theway researchersapproach scientificquestionsrel ated
to biological processes. Around fifty years ago, classical biochemistry was
restricted to the investigation of biological processes (enzymatic reactions)
from a chemical point of view. Some years later, protein sequencing and
purification techniques permitted thefinding of relationships between these
processesand particul ar peptidemol ecul es. Nowadays, the capability of DNA
manipulation (purification, sequencing, modification, expression in living
cells, etc...) permits scientists to analyze many biological processes from a
molecular point of view. The empirical generation of a large amount of
information regarding DNA -> Protein -> Function relationships and the
formulation of general biological rules offers the possibility of prediction.
On the basis of thisknowledge and its application to newly identified DNA
sequences, bioinformaticians are able to make predictions about biological
processesand rel ationshi psbetween macromol ecul es. | n this sense, therecent
arrival of complete genomic sequences is "happily"” received by the
bioinformatic community as very promising material.

GENE PREDICTION

In order toexploit agenome, the correct identification of the genes contained
thereinisrequired. In the case of prokaryotic genomes, the task is relatively
simple. As protein-coding regions in bacterial genomes are not interrupted
by intronic sequences, their identification isreduced to the detection of open
reading frames by simple trandlation of the DNA. The key of this processis
the definitionof agenein termsof the minimum accepted size, compromising
the identification of the small ones. Nevertheless, this problem has been
partially solved by evaluating the existing differences in nucleotide
composition between coding and non-coding regions (Salzberg et al ., 1998).
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Gene prediction fromeukaryotic genomes requires much moreattention
and effort owing to the large size of the sequences, the low gene density
(estimated to be around 1 gene/100 kb on average in the human genome;
International Human Genome Sequencing Consortium, 2001) and the
complexity of the gene structures (mainly the presence of introns that in
higher eukaryotes can be larger than 100 kb). Alternative splicing (the
possibility of expressing differents sets of exons for a given gene under
different conditions), and the presence of genes nested in the intronic
sequencesof other genes, complicate even morethe predictions. The recent
release of the draft sequence of the Human genome (International Human
Genome Sequencing Consortium, 2001; Venter et al., 2001) and the partially
sequenced mouse genome constitutea challengefor thealgorithmsdevel oped
to find genesin complex scenarios.

Some collections of predicted genes have been lately proposed for the
human genomes (Venteret al., 2001 ;Yeh et al., 2001; Hubbard et al ., 2002).
The methodol ogy usedin each caseis quitedifferent yielding distinct pictures
of the human gene content as revealed by the little overlap observed among
thesecollections (Hogenesch et al ., 2001). Usually the automatic generation
of gene collections for a particular organism on the basis of its genome
analysisshould find a compromisebetween quantity and quality. If thesetis
too small, despite its high accuracy, it will be considered non-informative
and the scientific community will not useit. On the other hand, atoo large
gene index is likely to contain many false positives (not true genes) and
users will be skeptical about this information.

The rapid growth of the number of known cDNA sequences permits a
broader identification of new genes on the basis of sequence similarity
analysis. In this sense, programs that combine the identification of intron-
exon boundaries with sequence similarity to known cDNAs or derived
proteins, such asBLAST (Altschul et al., 1997) or GENEWISE (Birney and
Durbin, 1997),are highly efficient in identifying genes but too expensivein
termsof timeand computer power when applied to large genomic sequences.
Therefore, most gene prediction strategies tend to save time by sacrificing,
at least in the initial steps, the sequence similarity analysis. The programs
for abinitio identification of eukaryotic genes (i.e. without using sequence
similarity) haveimproved along with the available empirical knowledge on
seguence patterns associated to genomic elements (for review see Guigo,
1997; Burge and Karlin, 1998; Guigd et. al., 2000). In this sense, these
algorithms are designed to identify protein-coding genes basically upon
detection of thefirst and last coding exons, intron-exon boundaries, promoter
sequences (mainly transcription start sites and TATA-box signals),
translational signals (Kozak, 1996), and by analysing their sequence
composition (using Hidden Markov Models). It has been reported that these



Torrents et al.

programs, concretely GENESCAN (Burge and Karlin, 1997), present a
sensitivity (proportion of true genes found) and specificity (proportion of
predicted genesthat arereal) around 80% on average (Guigo et al ., 2000). It
should be though mentioned that this estimation was obtained considering
artificial and controlled data sets that are quite distinct from real genomic
sequences, i.e. they did not contain non-functional gene copies. Since these
non-functional gene copies, known as pseudogenes, normally present many
of the sequence characteristicsfound in genes, their presence should betaken
into account when eval uatingtheefficiency of gene predictionmethodol ogies.

PseUDOGENES COMPLICATE GENE PREDICTION

We define as pseudogenes all dispensable gene copies unable to code for
functional proteins (for review seeVanin, 1985; Mighell et al., 2000). Those
gene duplications that occur in germinal cell lines and are harmless for the
organism will remainin the popul ation and hence will be present in available
genomic sequences. On the basis of the mechanism of such duplication two
typesof pseudogenes can be distinguished in eukaryotic genomes:. processed
and non-processed pseudogenes. Processed pseudogenes (also called retro-
pseudogenes) are the result of aretro-transposition event in which single-
stranded mRNA undergoesretro-transcription and integration in the genome
with the help of the enzymatic machinery of retrotransposable elements
(Esnault et al., 2000). Most of these pseudogenes havelost al or part of the
introns present in the parental gene and are likely to be inactive right from
thetime of generation sincethey typically present no 5'-promoter sequence.
Non-processed pseudogenes areformed by partial or complete genetandem
duplication. On the one hand, fragmented gene duplicates (i.e. lacking
promoter sequences or relevant exons), arelikely to be born as pseudogenes,
like most processed pseudogenes. Compl ete gene duplicates havethe chance
to remain active by gaining a new function (neofunctionalization), but in
most of the casesthey are converted into pseudogenes by the acquisition of
mutations that disrupt their expression. The characteristic feature of al non-
processed pseudogenes is their partial or total conservation of the gene
structure of the parental gene.

How do current gene prediction strategies differentiate genesfrom their
non-functional copies? Since pseudogenes often accumulate all possible
sequence alterations with time, they may include disruptions (STOP codons
or frameshifts) in the corresponding open reading frame (ORF). Standard
annotation strategiescatal ogueas pseudogenesall identified genomicregions
whenever suchdisruptionsaredetected. n addition, dueto thelow probability
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of aretrotransposed gene being correctly inserted in front an active promoter,
any sign characteristic of a retrotranspositional origin (mainly the loss of
introns) is also considered as indicative of non-functionality. Although the
detection of these features can be used to correctly classify many real
pseudogenes, we can propose some situations where these could lead to
erroneous conclusions. For instance all functional processed genes (retro-
genes, Brosius, 1999), all genes with pseudo-exons that are skipped during
splicing, and those genes presenting sequencing errors leading to disruptions
in their ORFs would be misclassified as pseudogenes. Moreover, non-
processed pseudogeneswith sequencealterationsother than clear disruptions,
e.g. amino acid substitutions or critical aterations at the promoter level, are
likely toend up being annotated as genes. Although thereis no quantification
of such situations, asitisdifficult to prove non-functionality giventheinfinite
conditions under which agenecould beexpressed, asmuch as 21% of current
gene predictions may be affected by these cases (International Human
Genome Sequencing Consortium, 2001). Therefore additional ways of
discrimination between functional and non-functional sequences should be
considered. On the basis of these simple criteria, pseudogenes have been
identified in many organisms, from prokaryotes (Andersson and Andersson,
2001 ;Coleetal.,2001) to higher organisms(Goncalveset al ., 2000; Harrison
et al., 2001). At present, the total number of pseudogenes is not known for
any organism.

In the case of the human genome, the compl ete sequence and annotation
of human chromosome 22 and 21 indicate a proportion of one pseudogene
every 4 or 5 functional genes (Dunham et al., 1999; Hattori et al., 2000)
suggesting a total of 7000 to 9000 pseudogenes in the complete human
genome by assuming atotal of 35000 humangenes. On thebasisof adifferent
study wherethecontent of processed pseudogeneswasanayzedinarestricted
portion of the human genome, aratio of one processed pseudogene every 3
functional genes has been also proposed (Goncalveset al., 2000). Public
databases, which contain gene predictions of the human genome, do not
normally consider annotation of pseudogenic sequences as relevant. By
simply searching with the keywords "human™ and " pseudogene” we can
retrieve up to 3534 and 767 sequences from the public DNA databases
GeneBank and EMBL, respectively (by March, 2002). Since most of these
entries correspond to side-products obtained from diverse genetic studies,
their annotation quality is expected to be low. Despite all these surveys,
there has been so far no extensive and accurate approach aiming at the
identification and annotation of pseudogenes in the whole human genome.
But, the number of pseudogenes, at least in mammal genomes, islikely to
be high enough to demand careful consideration in gene identification
procedures.
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An exhaustive and accurateidentification of pseudogenic sequences and
an estimation of their content for available genomes are therefore needed.
This information is not only relevant for an accurate identification of
functional genes, but also offers the possibility to understand and quantify
activegenomic processes, such asgeneduplication and non-functional DNA
removal ("housecleaning™), which directly influence both the general
evolution of the organism and the size of the genome.

PSEUDOGENE PREDICTION

In order to improve discrimination between functional and pseudogenic
genomic regions we have considered in a recent study (manuscript under
submission) aparameter corresponding to theratio of innocuousto del eterious
nucleotide substitutions associated to a particular problem sequence.
According to the neutral evolution theory, pseudogenes, like other non-
functional genomic regions, are unconstrained by selection (Kimura, 1977).
This meansthat any kind of mutation affecting a pseudogeni c sequence will
be harmless for the organism, possibly fixed in the population and hence
detectable in available sequences. On the contrary, most deleterious
mutations, i.e. negatively affecting the function of a gene, will be selected
against and hardly maintained in the population. In general, the evaluation
of the ratio of neutral to deleterious substitutions arising in a particular
sequence involves two basic steps: (i) estimation of the number of neutral
and deleterious sites at the moment of sequence formation (right after
duplication), and (ii) counting the number of neutral and deleterious sites
substituted thereafter. This last step must include a correction for multiple
substitutions occurring at same sites.

From a practical point of view, neutral mutations are defined as
substitutions that do not change the amino acid composition of the gene
product (synonymous), while deleterious mutations account for those that
induce amino acid replacement (non-synonymous). It is likely that some
point mutations occurring in functional genes, despite inducing no amino
acid replacement and therefore considered synonymous or neutral, areindeed
del eteriousand consequently sel ected against. On theother hand, substitutions
inducing replacement of irrelevant amino acids and therefore considered
non-synonymous are in fact fixed in the population as neutral. We believe
that, although it is not possible nowadays to identify and quantify with
precision neutral and del eterious sites, the approximations obtained arefair
indicators of the degree of selective pressure associated to a particular
sequence. Theseratios, designed asds/dn (or Ks/Ky), where ds = number of
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A B C

Figure 1. Assumed phylogenetic relationship between the problem sequence and the two
closest functional homologues. The ds/dy associated to the problem sequence (A) iscal cul ated
along the dashed branch, i.e. from the parental sequence (P). Pisinferred from thealignment

of sequences A, B, and C using the parsimonian method (Y ang, 1997).

synonymous substitutions / total number of synonymous sites, and dn =
number of non-synonymous substitutions / total number of non-synonymous
sites, are expected to be about onefor pseudogenes, and higher in the case of
functional genes (Li et al., 1981). Several analyses based on the calculation
of ds/dn have been successfully applied to case studies to measurefunctional
constraints associated to sequenceevolution (Ohtaand Ina, 1995; Nekrutenko
et al., 2002), but never before as a criterion to discriminate between genes
and pseudogenes in genome annotation.

Inthissense, we have devel oped astrategy to automatically obtainreliable
ds/dnvauesfor largedatasets. Basically, thisapproach consists on predicting
all point mutationsthat have been fixed in our problem DNA sequence (A in
Figure 1) from the moment of itsformation, i.e. from the duplication of the
parental sequence (P). In order to do so, we need to deduce the nucleotide
sequence of this parental gene and then to compare it with our problem
sequenceA. Theinference of Prequires two homologous sequences (B and
C). The assumed phylogenetic relationship between all these sequencesis
shown in Figure 1. We believe that, in our study, this phylogeny accounts
for the mgjority of the cases.

The application of similar protocols in studies of sequence evolution
tends to force the comparison of the complete sequence A with very close
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homologues B and C. In contrast, we opted to restrict this analysis to those
regions of the sequences that appear to be more conserved, i.e. regions that
are expected to be under stronger selective pressure in genes. Since we can,
consequently, expect higher differences of ds/dy values between functional
and pseudogenic sequences we have permitted the use of more remote
homologues B and C. In this way we increased the number of problem
sequences for which it was possible to compute ds/dn values.

Weevaluated our strategy and thereliability of theresulting ds/dx ratios
ascriterion to discriminate functional from non-functional sequences using
two confident sets of functional and pseudogenic human sequences,
respectively. A non-redundant (up to 50% amino acid identity) data set
consisting of 3034 well annotated human cDNA sequences (the human
reviewed annotation fraction of the RefSeq database, Pruitt and Maglott,
2001) was taken as the functional set. The collection of pseudogenes was
obtained through ahomology search withinintergenic regionsand consisted
of 1730 processed elements containing at |east one stop codon or frameshift
in the first half of the corresponding ORFs and thus likely to be non-
functional. We applied to these two sets three different methods to acquire
ds/dn values that use different calculation models (Nei and Gojobori, 1986;
Ina, 1995; Y ang and Niel sen, 2000) obtaining similar results. Thelogarithmic
distributions of these two sets according to their associated ds/dy values are
clearly distinct as shown in Figure 2 (using the method described by Yang
and Nielsen, 2000). Most ds/dy values associated to either functional or
pseudogenic sequencesareclearly indicativeof stronger and weaker selective
constraints, respectively. It should be noticed that positive selection,
theoretically observed if ds/dn <1, is suspected in a very few cases (Endo
et. al., 1996) and therefore not considered as such in this study. But, why
some ds/dn values do not strictly follow the theoretical expectation: ds/dn
for pseudogenes = 1, and ds/dn for genes > | ? Despite a certain level of
inaccuracy of our method, we can think of some explanations accounting
for these situations. (i) Fast evolving genes are expected to present ds/dn
values close to one, as the number of amino acid replacement substitutions
(dn), under weaker selective constraints, can get close to the number of
synonymous substitutions (ds); and (ii) the restriction of our analysis to
sequence regions with high amino acid conservation, forces dy to remain
low and therefore pushes ds/dx of some pseudogenes to higher values.
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Figure 2. Distribution of reliable functional and pseudogenic sequences according to their associated ds/dy values.
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How MANY PSEUDOGENES ARE IN THE HuMAN GENOME?

Theinformation about the behaviour of ds/dy val uesobtained form functional
and pseudogeni ¢ datasets can be used to estimate the portion of pseudogenes
contained in any collection of human sequences with homology to known
proteins. Accordingly, we carried out the same ds/dy analysis on a set of
sequences obtained from a homology-based search through al intergenic
regionsin the human genome (accordingto ENSEMBL human genedatabase;
Hubbard et. al., 2002). Of all the sequences found, we estimated, based on
the dg/dy values obtained, that around 10000 sequences corresponded to
pseudogenes and around 2000 to functional genes. From a deeper analysis
of two subsets containing either pseudogenes or genes regarding the presence
of ORF disruptions with two reliable subsets of identified pseudogenes and
functional sequences, our calculations indicated that up to 32% of the
pseudogenesand 26% of the genesidentified by standard annotation strategies
(Hubbard et. al., 2002) could be miscataloged as genes and pseudogenes,
respectively.

We believethat this estimate of 10000 pseudogenesin the entire human
genome is probably far too low. Taking into account the limitationsinternal
to our homology search strategy (sequence similarity threshold applied and
sequences lost by common DNA repeat masking), we can increase this
estimate up to 35000 pseudogenes. Furthermore, we have reasonsto suppose
that some sequences annotated asgenesin ENSEMBL databaseand therefore
excluded from our search, could correspond to pseudogenes. Based again
on the ds/dy analysis, we have estimated that this group of elements covers
up to 23% of the whole database. We have found that most of these gene-
catalogued pseudogenes correspond to non-functional partial tandem gene
duplications, which have not yet acquired ORF disruptions and therefore
difficult to index as such. If we add these elements, our estimate of human
pseudogenes raises to 40000, covering at least a 5% of the genome.

CONCLUSION

We believe that 40000 is still an underestimate of the real number of
pseudogenes in the human genome, since many pseudogenes are hidden to
usdueto their small size or degeneration under the possiblelevel of detection
by sequence similarity. The amount of non-functional DNA created by
duplication seemsto be higher than expected, as the high rate of pseudogene
formation reflects, suggesting a relaxed evolutionary pressure on genome
size in humans. Thisis in contrast to what has been proposed for the fly,
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where the high rate of non-functional DNA removal suggests a higher
selective constraint on the size of its genome. However we don't know
whether our genomeisstill growing by meansof DNA duplication, or whether
we havereached the™ alowed"” genomicsize, i.e. theformation and removal
of non-functional DNA are at equilibrium. A deeper analysis regarding the
age of the pseudogenic regions and the rate of DNA removal can bring light
to thisquestion. Considering gene duplication asonedf theimportant driving
forces of evolution, an accurate analysis of the pseudogene content in other
organism and their comparison to the human pseudogene set is needed asit
can offer hints regarding the speed of genome evolution.
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