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Chapter 11 

Pseudogenes and Genomes 

David Torrents, Mikita Suyama 
and Peer Bork 

The knowledge on the gene content of any organism is essential for the 
study and understanding of its biology. The recent sequencing of large and 
complex genomes has forced the scientific community to develop or improve 
computer programs in order to identify such genes. These algorithms are 
based on the identification of characteristic patterns of gene-related elements 
(such as promoters, splice sites, polyadenilation signals, and others) and 
present an estimated success rate of 80%. But, neither these programs nor 
their evaluation procedures normally take into consideration the presence of 
non-functional gene copies in the genome. These dispensable gene copies, 
known as pseudogenes, are formed either by retrotransposition or by tandem 
duplication. In some cases they are difficult to differentiate by using standard 
procedures since they share many sequence characteristics with their 
corresponding functional parental genes. The only criteria used so far to 
identify such non-functional elements depends on the detection of either 
disruptions in the open reading frame or any typical sign of retrotransposition. 
This leads to misclassification of some genes. In order to overcome this 
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situation, we have developed an independent strategy that is capable to 
differentiate many functional from non-functional sequences. This procedure 
takes advantage of the different selective constrains associated to pseudogenes 
and genes. Using this method we estimated that the human genome contains 
40000 pseudogenes, doubling current approximations. We are also proposing 
an error rate of 23% in standard procedures of gene annotation regarding the 
classification of genes and pseudogenes. 

The development of sophisticated techniques that permit direct manipulation 
of DNA has changed the way researchers approach scientific questions related 
to biological processes. Around fifty years ago, classical biochemistry was 
restricted to the investigation of biological processes (enzymatic reactions) 
from a chemical point of view. Some years later, protein sequencing and 
purification techniques permitted the finding of relationships between these 
processes and particular peptide molecules. Nowadays, the capability of DNA 
manipulation (purification, sequencing, modification, expression in living 
cells, etc.. .) permits scientists to analyze many biological processes from a 
molecular point of view. The empirical generation of a large amount of 
information regarding DNA -> Protein -> Function relationships and the 
formulation of general biological rules offers the possibility of prediction. 
On the basis of this knowledge and its application to newly identified DNA 
sequences, bioinformaticians are able to make predictions about biological 
processes and relationships between macromolecules. In this sense, the recent 
arrival of complete genomic sequences is "happily" received by the 
bioinformatic community as very promising material. 

In order to exploit a genome, the correct identification of the genes contained 
therein is required. In the case of prokaryotic genomes, the task is relatively 
simple. As protein-coding regions in bacterial genomes are not interrupted 
by intronic sequences, their identification is reduced to the detection of open 
reading frames by simple translation of the DNA. The key of this process is 
the definition of a gene in terms of the minimum accepted size, compromising 
the identification of the small ones. Nevertheless, this problem has been 
partially solved by evaluating the existing differences in nucleotide 
composition between coding and non-coding regions (Salzberg et al., 1998). 
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Gene prediction from eukaryotic genomes requires much more attention 
and effort owing to the large size of the sequences, the low gene density 
(estimated to be around 1 gene/100 kb on average in the human genome; 
International Human Genome Sequencing Consortium, 2001) and the 
complexity of the gene structures (mainly the presence of introns that in 
higher eukaryotes can be larger than 100 kb). Alternative splicing (the 
possibility of expressing differents sets of exons for a given gene under 
different conditions), and the presence of genes nested in the intronic 
sequences of other genes, complicate even more the predictions. The recent 
release of the draft sequence of the Human genome (International Human 
Genome Sequencing Consortium, 2001; Venter et al., 2001) and the partially 
sequenced mouse genome constitute a challenge for the algorithms developed 
to find genes in complex scenarios. 

Some collections of predicted genes have been lately proposed for the 
human genomes (Venter et al., 2001 ; Yeh et al., 2001; Hubbard et al., 2002). 
The methodology used in each case is quite different yielding distinct pictures 
of the human gene content as revealed by the little overlap observed among 
these collections (Hogenesch et al., 2001). Usually the automatic generation 
of gene collections for a particular organism on the basis of its genome 
analysis should find a compromise between quantity and quality. If the set is 
too small, despite its high accuracy, it will be considered non-informative 
and the scientific community will not use it. On the other hand, a too large 
gene index is likely to contain many false positives (not true genes) and 
users will be skeptical about this information. 

The rapid growth of the number of known cDNA sequences permits a 
broader identification of new genes on the basis of sequence similarity 
analysis. In this sense, programs that combine the identification of intron- 
exon boundaries with sequence similarity to known cDNAs or derived 
proteins, such as BLAST (Altschul et al., 1997) or GENEWISE (Birney and 
Durbin, 1997), are highly efficient in identifying genes but too expensive in 
terms of time and computer power when applied to large genomic sequences. 
Therefore, most gene prediction strategies tend to save time by sacrificing, 
at least in the initial steps, the sequence similarity analysis. The programs 
for ab initio identification of eukaryotic genes (i.e. without using sequence 
similarity) have improved along with the available empirical knowledge on 
sequence patterns associated to genomic elements (for review see Guigó, 
1997; Burge and Karlin, 1998; Guigó  et. al., 2000). In this sense, these 
algorithms are designed to identify protein-coding genes basically upon 
detection of the first and last coding exons, intron-exon boundaries, promoter 
sequences (mainly transcription start sites and TATA-box signals), 
translational signals (Kozak, 1996), and by analysing their sequence 
composition (using Hidden Markov Models). It has been reported that these 
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programs, concretely GENESCAN (Burge and Karlin, 1997), present a 
sensitivity (proportion of true genes found) and specificity (proportion of 
predicted genes that are real) around 80% on average (Guigó et al., 2000). It 
should be though mentioned that this estimation was obtained considering 
artificial and controlled data sets that are quite distinct from real genomic 
sequences, i.e. they did not contain non-functional gene copies. Since these 
non-functional gene copies, known as pseudogenes, normally present many 
of the sequence characteristics found in genes, their presence should be taken 
into account when evaluating the efficiency of gene prediction methodologies. 

We define as pseudogenes all dispensable gene copies unable to code for 
functional proteins (for review see Vanin, 1985; Mighell et al., 2000). Those 
gene duplications that occur in germinal cell lines and are harmless for the 
organism will remain in the population and hence will be present in available 
genomic sequences. On the basis of the mechanism of such duplication two 
types of pseudogenes can be distinguished in eukaryotic genomes: processed 
and non-processed pseudogenes. Processed pseudogenes (also called retro- 
pseudogenes) are the result of a retro-transposition event in which single- 
stranded mRNA undergoes retro-transcription and integration in the genome 
with the help of the enzymatic machinery of retrotransposable elements 
(Esnault et al., 2000). Most of these pseudogenes have lost all or part of the 
introns present in the parental gene and are likely to be inactive right from 
the time of generation since they typically present no 5'-promoter sequence. 
Non-processed pseudogenes are formed by partial or complete gene tandem 
duplication. On the one hand, fragmented gene duplicates (i.e. lacking 
promoter sequences or relevant exons), are likely to be born as pseudogenes, 
like most processed pseudogenes. Complete gene duplicates have the chance 
to remain active by gaining a new function (neofunctionalization), but in 
most of the cases they are converted into pseudogenes by the acquisition of 
mutations that disrupt their expression. The characteristic feature of all non- 
processed pseudogenes is their partial or total conservation of the gene 
structure of the parental gene. 

How do current gene prediction strategies differentiate genes from their 
non-functional copies? Since pseudogenes often accumulate all possible 
sequence alterations with time, they may include disruptions (STOP codons 
or frameshifts) in the corresponding open reading frame (ORF). Standard 
annotation strategies catalogue as pseudogenes all identified genomic regions 
whenever such disruptions are detected. In addition, due to the low probability 
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of a retrotransposed gene being correctly inserted in front an active promoter, 
any sign characteristic of a retrotranspositional origin (mainly the loss of 
introns) is also considered as indicative of non-functionality. Although the 
detection of these features can be used to correctly classify many real 
pseudogenes, we can propose some situations where these could lead to 
erroneous conclusions. For instance all functional processed genes (retro- 
genes; Brosius, 1999), all genes with pseudo-exons that are skipped during 
splicing, and those genes presenting sequencing errors leading to disruptions 
in their ORFs would be misclassified as pseudogenes. Moreover, non- 
processed pseudogenes with sequence alterations other than clear disruptions, 
e.g. amino acid substitutions or critical alterations at the promoter level, are 
likely to end up being annotated as genes. Although there is no quantification 
of such situations, as it is difficult to prove non-functionality given the infinite 
conditions under which a gene could be expressed, as much as 21 % of current 
gene predictions may be affected by these cases (International Human 
Genome Sequencing Consortium, 2001). Therefore additional ways of 
discrimination between functional and non-functional sequences should be 
considered. On the basis of these simple criteria, pseudogenes have been 
identified in many organisms, from prokaryotes (Andersson and Andersson, 
2001 ; Cole et al., 2001) to higher organisms (Goncalves et al., 2000; Harrison 
et al., 2001). At present, the total number of pseudogenes is not known for 
any organism. 

In the case of the human genome, the complete sequence and annotation 
of human chromosome 22 and 21 indicate a proportion of one pseudogene 
every 4 or 5 functional genes (Dunham et al., 1999; Hattori et al., 2000) 
suggesting a total of 7000 to 9000 pseudogenes in the complete human 
genome by assuming a total of 35000 human genes. On the basis of a different 
study where the content of processed pseudogenes was analyzed in a restricted 
portion of the human genome, a ratio of one processed pseudogene every 3 
functional genes has been also proposed (Goncalves et al., 2000). Public 
databases, which contain gene predictions of the human genome, do not 
normally consider annotation of pseudogenic sequences as relevant. By 
simply searching with the keywords "human" and "pseudogene" we can 
retrieve up to 3534 and 767 sequences from the public DNA databases 
GeneBank and EMBL, respectively (by March, 2002). Since most of these 
entries correspond to side-products obtained from diverse genetic studies, 
their annotation quality is expected to be low. Despite all these surveys, 
there has been so far no extensive and accurate approach aiming at the 
identification and annotation of pseudogenes in the whole human genome. 
But, the number of pseudogenes, at least in mammal genomes, is likely to 
be high enough to demand careful consideration in gene identification 
procedures. 
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An exhaustive and accurate identification of pseudogenic sequences and 
an estimation of their content for available genomes are therefore needed. 
This information is not only relevant for an accurate identification of 
functional genes, but also offers the possibility to understand and quantify 
active genomic processes, such as gene duplication and non-functional DNA 
removal ("housecleaning"), which directly influence both the general 
evolution of the organism and the size of the genome. 

In order to improve discrimination between functional and pseudogenic 
genomic regions we have considered in a recent study (manuscript under 
submission) a parameter corresponding to the ratio of innocuous to deleterious 
nucleotide substitutions associated to a particular problem sequence. 
According to the neutral evolution theory, pseudogenes, like other non- 
functional genomic regions, are unconstrained by selection (Kimura, 1977). 
This means that any kind of mutation affecting a pseudogenic sequence will 
be harmless for the organism, possibly fixed in the population and hence 
detectable in available sequences. On the contrary, most deleterious 
mutations, i.e. negatively affecting the function of a gene, will be selected 
against and hardly maintained in the population. In general, the evaluation 
of the ratio of neutral to deleterious substitutions arising in a particular 
sequence involves two basic steps: (i) estimation of the number of neutral 
and deleterious sites at the moment of sequence formation (right after 
duplication), and (ii) counting the number of neutral and deleterious sites 
substituted thereafter. This last step must include a correction for multiple 
substitutions occurring at same sites. 

From a practical point of view, neutral mutations are defined as 
substitutions that do not change the amino acid composition of the gene 
product (synonymous), while deleterious mutations account for those that 
induce amino acid replacement (non-synonymous). It is likely that some 
point mutations occurring in functional genes, despite inducing no amino 
acid replacement and therefore considered synonymous or neutral, are indeed 
deleterious and consequently selected against. On the other hand, substitutions 
inducing replacement of irrelevant amino acids and therefore considered 
non-synonymous are in fact fixed in the population as neutral. We believe 
that, although it is not possible nowadays to identify and quantify with 
precision neutral and deleterious sites, the approximations obtained are fair 
indicators of the degree of selective pressure associated to a particular 
sequence. These ratios, designed as ds/dN (or Ks/KA), where ds = number of 
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Figure 1. Assumed phylogenetic relationship between the problem sequence and the two 
closest functional homologues. The dS/dN  associated to the problem sequence (A) is calculated 
along the dashed branch, i.e. from the parental sequence (P). P is inferred from the alignment 
of sequences A, B, and C using the parsimonian method (Yang, 1997). 

synonymous substitutions / total number of synonymous sites, and dN = 
number of non-synonymous substitutions / total number of non-synonymous 
sites, are expected to be about one for pseudogenes, and higher in the case of 
functional genes (Li et al., 1981). Several analyses based on the calculation 
of ds/dN have been successfully applied to case studies to measure functional 
constraints associated to sequence evolution (Ohta and Ina, 1995; Nekrutenko 
et al., 2002), but never before as a criterion to discriminate between genes 
and pseudogenes in genome annotation. 

In this sense, we have developed a strategy to automatically obtain reliable 
dS/dN values for large data sets. Basically, this approach consists on predicting 
all point mutations that have been fixed in our problem DNA sequence (A in 
Figure 1) from the moment of its formation, i.e. from the duplication of the 
parental sequence (P). In order to do so, we need to deduce the nucleotide 
sequence of this parental gene and then to compare it with our problem 
sequence A. The inference of P requires two homologous sequences (B and 
C). The assumed phylogenetic relationship between all these sequences is 
shown in Figure 1. We believe that, in our study, this phylogeny accounts 
for the majority of the cases. 

The application of similar protocols in studies of sequence evolution 
tends to force the comparison of the complete sequence A with very close 
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homologues B and C. In contrast, we opted to restrict this analysis to those 
regions of the sequences that appear to be more conserved, i.e. regions that 
are expected to be under stronger selective pressure in genes. Since we can, 
consequently, expect higher differences of ds/dN values between functional 
and pseudogenic sequences we have permitted the use of more remote 
homologues B and C. In this way we increased the number of problem 
sequences for which it was possible to compute ds/dN values. 

We evaluated our strategy and the reliability of the resulting ds/dys ratios 
as criterion to discriminate functional from non-functional sequences using 
two confident sets of functional and pseudogenic human sequences, 
respectively. A non-redundant (up to 50% amino acid identity) data set 
consisting of 3034 well annotated human cDNA sequences (the human 
reviewed annotation fraction of the RefSeq database, Pruitt and Maglott, 
2001) was taken as the functional set. The collection of pseudogenes was 
obtained through a homology search within intergenic regions and consisted 
of 1730 processed elements containing at least one stop codon or frameshift 
in the first half of the corresponding ORFs and thus likely to be non- 
functional. We applied to these two sets three different methods to acquire 
ds/dN values that use different calculation models (Nei and Gojobori, 1986; 
Ina, 1995; Yang and Nielsen, 2000) obtaining similar results. The logarithmic 
distributions of these two sets according to their associated ds/dN values are 
clearly distinct as shown in Figure 2 (using the method described by Yang 
and Nielsen, 2000). Most ds/dN values associated to either functional or 
pseudogenic sequences are clearly indicative of stronger and weaker selective 
constraints, respectively. It should be noticed that positive selection, 
theoretically observed if ds/dN < 1, is suspected in a very few cases (Endo 
et. al., 1996) and therefore not considered as such in this study. But, why 
some ds/dN values do not strictly follow the theoretical expectation: ds/dN 
for pseudogenes = 1, and ds/dN for genes > I? Despite a certain level of 
inaccuracy of our method, we can think of some explanations accounting 
for these situations. (i) Fast evolving genes are expected to present ds/dN 
values close to one, as the number of amino acid replacement substitutions 
(dN), under weaker selective constraints, can get close to the number of 
synonymous substitutions (ds); and (ii) the restriction of our analysis to 
sequence regions with high amino acid conservation, forces dN to remain 
low and therefore pushes ds/dN of some pseudogenes to higher values. 
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The information about the behaviour of ds/dN values obtained form functional 
and pseudogenic datasets can be used to estimate the portion of pseudogenes 
contained in any collection of human sequences with homology to known 
proteins. Accordingly, we carried out the same ds/dN analysis on a set of 
sequences obtained from a homology-based search through all intergenic 
regions in the human genome (according to ENSEMBL human gene database; 
Hubbard et. al., 2002). Of all the sequences found, we estimated, based on 
the ds/dN values obtained, that around 10000 sequences corresponded to 
pseudogenes and around 2000 to functional genes. From a deeper analysis 
of two subsets containing either pseudogenes or genes regarding the presence 
of ORF disruptions with two reliable subsets of identified pseudogenes and 
functional sequences, our calculations indicated that up to 32% of the 
pseudogenes and 26% of the genes identified by standard annotation strategies 
(Hubbard et. al., 2002) could be miscataloged as genes and pseudogenes, 
respectively. 

We believe that this estimate of 10000 pseudogenes in the entire human 
genome is probably far too low. Taking into account the limitations internal 
to our homology search strategy (sequence similarity threshold applied and 
sequences lost by common DNA repeat masking), we can increase this 
estimate up to 35000 pseudogenes. Furthermore, we have reasons to suppose 
that some sequences annotated as genes in ENSEMBL database and therefore 
excluded from our search, could correspond to pseudogenes. Based again 
on the ds/dN analysis, we have estimated that this group of elements covers 
up to 23% of the whole database. We have found that most of these gene- 
catalogued pseudogenes correspond to non-functional partial tandem gene 
duplications, which have not yet acquired ORF disruptions and therefore 
difficult to index as such. If we add these elements, our estimate of human 
pseudogenes raises to 40000, covering at least a 5% of the genome. 

We believe that 40000 is still an underestimate of the real number of 
pseudogenes in the human genome, since many pseudogenes are hidden to 
us due to their small size or degeneration under the possible level of detection 
by sequence similarity. The amount of non-functional DNA created by 
duplication seems to be higher than expected, as the high rate of pseudogene 
formation reflects, suggesting a relaxed evolutionary pressure on genome 
size in humans. This is in contrast to what has been proposed for the fly, 
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where the high rate of non-functional DNA removal suggests a higher 
selective constraint on the size of its genome. However we don't know 
whether our genome is still growing by means of DNA duplication, or whether 
we have reached the "allowed" genomic size, i.e. the formation and removal 
of non-functional DNA are at equilibrium. A deeper analysis regarding the 
age of the pseudogenic regions and the rate of DNA removal can bring light 
to this question. Considering gene duplication as one of the important driving 
forces of evolution, an accurate analysis of the pseudogene content in other 
organism and their comparison to the human pseudogene set is needed as it 
can offer hints regarding the speed of genome evolution. 
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