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Abstract 
 

The interpretation of microarray experiments is commonly addressed by means a two-step approach in which 
the relevant genes are firstly selected uniquely on the basis of their experimental values (ignoring their coordinate 
behaviors) and in a second step their functional properties are studied to hypothesize about the biological roles they are 
fulfilling in the cell. Recently, different methods (e.g. GSEA or FatiScan) have been proposed to study the coordinate 
behavior of blocks of functionally-related genes. These methods study the distribution of functional information across 
lists of genes ranked according their different experimental values in a static situation, such as the comparison between 
two classes (e.g. healthy controls versus diseased cases). Nevertheless there is no an equivalent way of studying a 
dynamic situation from a functional point of view.  

We present a method for the functional analysis of microarrays series in which the experiments display 
autocorrelation between successive points (e.g. time series, dose-response experiments, etc.)  The method allows to 
recover the dynamics of the molecular roles fulfilled by the genes along the series which provides a novel approach to 
functional interpretation of such experiments. The method finds blocks of functionally-related genes which are 
significantly and coordinately over-expressed at different points of the series. This method draws inspiration from 
systems biology given that the analysis does not focus on individual properties of genes but on collective behaving 
blocks of functionally-related genes. 

 The FatiScan algorithm used in the method proposed is available at: http://fatiscan.bioinfo.cipf.es, or within the 
Babelomics suite: http://www.babelomics.org. Additional material is available at: http://bioinfo.cipf.es/data/plasmodium 
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1  Introduction  
 

DNA microarray technology has been extensively used to obtain snapshots of the expression of genes in 
different samples, tissues, experimental conditions, etc. While typical microarray assays are designed to 
study static experimental conditions, there is a class of experiments, time series, in which a temporal process 
is measured. Time series offer the possibility of identifying the dynamics of gene activation, which allows to 
infer causal relationships. Such relation-ships can be used to infer models of regulatory networks [1] either 
directly [2] or through the identification of activators and repressors [3].  

An important difference between these two types of experiments is that while static data sampled from a 
population (e.g. diseased cases, healthy controls, etc.) are assumed to be independent, time series data are 
characterized by displaying a strong autocorrelation between successive points [4]. Initially, time series were 
analyzed using methods originally developed for independent data points [5-7]. More recently, algorithms 
were developed to specifically address this type of data. Data analysis now address issues such as the 



alignment of temporal data sets [8, 9] and the identification of differentially expressed genes [10]. Also 
different clustering methods specific for time series have been recently proposed. Among these, clustering 
based on the dynamics of the expression patterns [11], clustering using a hidden Markov model [12] or 
clustering specifically devised for short time series [13]. 

The final aim of a typical microarray experiment is to find a molecular explanation for a given 
macroscopic observation, which in the case of time series is the dynamic behavior of a system such as a cell 
cycle [6, 14], responses to temperature changes or stresses [15], immune response [16], etc. Commonly, a 
two-step approach is used for the analysis and further functional interpretation of such experiments. In it, 
genes showing an “interesting” behavior (differentially expressed, clustered, etc.) are firstly selected, usually 
ignoring the fact that these genes are acting cooperatively in the cell and consequently their behaviors must 
be coupled to some extent [17]. In this selection process, stringent thresholds to reduce the false positives 
ratio in the results are usually imposed. In a second step, the selected genes of interest are compared to the 
background in order to find enrichment in any functional term. Several popular programs, such as FatiGO 
[18], Ontoexpress [19], and others [20], use this schema. Under a systems biology perspective this procedure 
is far away from being optimal because much information is lost due to the fact that a large number of true 
positives is lost as false negatives in order to reduce in the possible the number of false positives. Methods 
inspired in systems biology can use lists of genes ranked by differential expression and directly search for the 
distribution of blocks of functionally related genes across the list without imposing any threshold that ignore 
the cooperative behavior of such blocks. Recently, a family of threshold-free methods devised to find groups 
of functionally related genes with a coordinate over- or under-expression across a list of genes ranked by 
differential expression have recently been proposed [21-24].  

Here we present a conceptually different approach in which the aim is to detect the biological processes 
operating along a time series by using a threshold-free approach [21]. We applied the method to a time series 
obtained for the intraerythocytic developmental cycle of the parasite Plasmodium falciparum [14]. The 
results obtained are not simple lists of genes, but the pattern of temporal activations and deactivations of the 
different biological roles that shape the developmental cycle of the parasite.   
 
2  Data  
 
The data used is a microarray time series experiment of Plasmodium falciparum during the 48 hours of the 
intraerythrocytic developmental cycle (IDC) with samples taken every hour [14]. The dataset consists of 
7462 probes (70mer oligonucleotides), representing 4488 of the 5409 ORFs of the Plasmodium falciparum 
strain 3D7. A total of 46 time points (covering 48 hours, sampling time points in intervals of one hour; time 
points 23 and 29 had no data in the original dataset) were used in the study.  
The asexual blood stage of the parasite Plasmodium falciparum causes the pathogenesis of the parasite in 
human, therefore understanding its gene expression profile is crucial for drug discovery and vaccine design. 
In blood, the parasite undergoes a 48 hours cycle characterized by three developmental forms, Ring (1-17 
time points, being 1 time point equal to 1 hour), Trophozite (18-29 time points) and Schizont (30-48 time 
points). The mature Schizont suffers an asexual division to form up to 32 merozoites that are released to 
blood to invade new erythrocytes, this produces a crisis known as malaria fever. 
 
3  Methods  
 
3.1 Microarray data preparation 
 
Microarray data used were the log-ratios of the normalized values of expression (see [14] for details). The 
data were arranged into a matrix of gene expression values where columns represent time points and rows 
represent genes. Here, time point 1 (first column) was taken as reference for the analysis. Genes with no 
information in this column were removed from the analysis. Then, a transformed matrix containing as many 
columns as time points minus one (the initial time point) was obtained by subtracting each time point from 
the reference time point (both are log ratios). Each column so obtained accounts for the relative differences 
in expression of each gene with respect to its original expression value at time 1 (or in other words, the log 
ratios of the gene expression values with respect to their respective value in the initial time).  
 



3.2 Functional analysis using the FatiScan, a threshold-free method 
 
The aim of the analysis is to find biological roles (according to GO annotations) that are activated or 
deactivated across the time series. To this end, all the columns were analyzed to detect blocks of 
functionally-related genes constitutively over- or under-expressed with respect to the initial condition.  
The FatiScan method [21, 25] is a segmentation, threshold-free test for detecting the biological roles fulfilled 
by the genes across an ordered list of gene expression values. The aim of the test is to detect, across an 
ordered list of genes, groups that are cumulated in one of the extremes of the list (see Figure 1C). The 
biological meaning is as follows: if the genes are ordered by differential expression between two conditions, 
a block of genes on the top would point to its collective over-expression (or under-expression if in the bottom 
of the list). The blocks can be formed using the GO annotations, so we would be able of finding the 
collective behavior of blocks of genes functionally related. In particular, the method consists on the 
sequential application of an Fisher’s exact test to consecutive partitions of an ordered list of genes to detect 
asymmetrical distributions of GO annotations in the genes at both sides of the partition. As previously 
mentioned, finding such asymmetry would point to an over-representation (or under-representation) of a GO 
term in one of the sides of the list. If the list represents the differences in gene expression observed in time t 
with respect to the initial time, this particular GO term can be considered to be constitutively and 
significantly activated at time t.  
The significance of this asymmetry is obtained through a Fisher’s exact test (one-tailed in this case) applied 
over a contingency table. This will detect significantly over or under represented GO terms when comparing 
the upper side to the lower side of the list, as defined by any partition. The number of partitions used was of 
50, which was previously shown that produces optimal results in terms of sensitivity and results recovered 
[21]. Multiple testing effect due to the massive testing and assignation of biological terms was corrected by 
the widely accepted FDR [26]. The FatiScan applied to a list of genes ranked by expression level will detect 
blocks of functionally related genes constitutively over- or under-expressed. In this study FatiScan was used 
to search for significant GO terms from to the three main categories (biological process, molecular function 
and cellular component) at different levels of the GO hierarchy (levels 3, 4, 5, 6 and 7). 
 

 
Figure 1: Procedure for the functional annotation of a time series. See text for an explanation. 

 
3.3 Functional analysis of the time series. 
 
Each column, corresponding to any time point beyond the initial time, was independently ordered from 
higher to lower values of relative expression (log ratios of the expression with respect to time 1). The 
positions occupied by the genes in the ranking previously obtained for each column are related to their 
relative contribution to the biological processes operating in this particular time point. A FatiScan analysis of 



each time point will render the GO terms whose corresponding genes displayed a significant coordinated 
high expression. These GO terms provide a detailed view on the biological roles active at the time points at 
which they have been detected. The dynamics of these functional roles within the cell can be understood by 
plotting the GO terms significantly over-expressed along the time axis.  
Figure 1 illustrates the procedure followed. Genes at each time point are ranked from highest (top) to lowest 
(bottom) relative expression with respect to time 1 (Figure 1A). Then, for each list of ranked genes generated 
in any time point, the significant over-represented GO terms in the tail corresponding to the highest 
expression values are recorded. Figure 1B shows a GO term not related to high expression at this time point. 
Conversely, the GO term in Figure 1 C is significantly over-represented in high expression values. The 
partitions used to decide that a given term is significantly over-represented in the upper tail of the list with 
respect to the lower part are used for the graphical representation. The proportion of genes annotated with a 
significant GO term in the most significant partition is finally plotted in the graphical representation of the 
GO dynamics. In the example in Figure 1 D, the most significant partition, with p=0.001, captures the 
maximum divergence according to the test (with 4 out of a total of 6 terms), which would correspond to a 
value of 66.67%. 
The way in which the lists are ordered determines the hypothesis to be tested. In this case we are testing 
over-expressions with respect to a initial situation (point t=1), but other arrangements are possible (e.g. any 
point with respect to the previous one, etc.) 
 
4 Results and discussion 
 
Plasmodium falciparum life cycle is highly complex, involving two different hosts (mosquito, human), 
different tissues (liver, blood and mosquito), intra and extra cellular location and three developmental stages. 
Many attempts have been made to explain the gene expression profile of this the intraerythrocytic 
developmental cycle of the parasite due to its implication in human health [14, 27].  

 
 

 
 
 

 

Figure 2. Dynamics of the biological process GO category at level 3 along the intraerythrocytic 
developmental cycle of the parasite. The blue vertical lines mark the transition between ring to thropozyte 
and from this stage to schizont, respectively. 
 



Here we take a new approach based on the direct analysis of the dynamics of the biological roles fulfilled by 
the genes, as described by the GO categories. 
More than 40 GO terms over-represented at high expression values were obtained for some GO categories 
and levels, which constitute an unprecedented wealth of information on the functional behavior at molecular 
level of P. falciparum blood cycle across time. Results for each ontology class may give different type of 
information. Thus, plots of GO cellular component terms show how the parasite activity moves from some 
cellular compartments to others (for example from nucleus in the initial stages of the cycle to membrane and 
host in the final stage) while molecular function and biological processes GO categories are related to 
biological roles of different nature coordinately played by the genes in the cell 
Here we provided only a summarized discussion of several aspects of the dynamics of the biological roles 
and subcellular locations at which the genes are carrying out their activities. A more detailed discussion is 
beyond the scope of this paper. 
 
4.1 Dynamics of the biological roles along the cell cycle 
 
The plots of the different GO terms found as significantly over-represented at different times clearly 
illustrates the dynamics of the different roles and how the cell carries out a sequence of functional steps 
during its life cycle. 
Figure 2 illustrates how different biological roles switch on and off along the time points. These biological 
processes account for the molecular events that govern the transitions between the developmental stages of 
the intraerythrocytic cycle of the parasite. Just to cite a few examples, GO terms related to metabolism are 
found in early staged of the cycle, whereas GO terms related to signaling occur preferentially at the end, in 
the schizont stage.  

 

 
 
 

 

Figure 3. Dynamics of the subcellular location GO category at level 4 along the intraerythrocytic 
developmental cycle of the parasite. The blue vertical lines mark the transition between ring to thropozyte 
and from this stage to schizont, respectively 

 
Figure 3 gives information on the location, at subcellular level, where the above mentioned biological roles 
are taking place. It is very illustrative the fact that during the initial stages much activity occurs around 



locations related to replication (RNA polymerase complex, nucleus, ribonucleoprotein complex), while in the 
later stages terms related to invasion and with the interaction with the host cells are found (host cell 
cytoplasm, host cell plasma membrane).  
In the next section a more detailed explanation of some terms in relation to the stage of the cycle in which 
they appear is provided. Also, in the additional information web page the three GO categories at different 
levels can be found. More precise terms, descendant in the GO hierarchy of the terms shown in the figures, 
account with more precision for the biology of the parasite and can be found in the web page of additional 
information in http://bioinfo.cipf.es/data/plasmodium. Additionally, this page contains links to the genes in 
the GO categories found as significantly over-expressed. 
 
4.2 Biological roles in the different developmental stages 
 
A summary of the GO terms (not all but the ones that are in consonance with previous findings as well as 
other relevant in this context) over-represented during the Plasmodium Intraerythrocytic Cycle follows. A 
complete list of the GO terms found is available in the additional material pages. 
 
4.2.1 Ring and early-Trophozoite:  
 
Basic metabolism is on the top of the cell activities during this part of the cycle in which the parasite is 
starting the maturation process. This is reflected by a high gene activity, firstly related to transcription and 
then to translation. Some GO terms found as over-represented at this stage that support these evidences are: 
transcription, DNA-dependent, mRNA splicing, RNA metabolism, transcription, RNA modification, RNA 
metabolism, nucleotide metabolism, nucleus, translation, biosynthesis, protein biosynthesis, amino acid 
activation, amino acid metabolism, tRNA metabolism, regulation of protein biosynthesis, regulation of 
translation, regulation of metabolism, organic acid metabolism, RNA polymerase complex and tRNA and 
amino acid metabolism. 
There is also an over-representation of terms that express the increase of the ribonucleotide biosynthesis such 
as: pyrimidine base metabolism and pyridine nucleotide metabolism. The presence of a high metabolic 
activity can be deduced from the over-representation of metabolism and other related terms like 
macromolecule biosynthesis and protein biosynthesis, all with a high number of genes involved. The high 
representation of protein biosynthesis could explain the over-representation of the proteasome complex term 
at this stage (proteosome as a quality control system). Interestingly, we found in time point 15 
over-represented the terms host and host cell cytoplasm. The major stage of interaction with host comes later 
on in the cycle. 
 
4.2.2 Trophozoite and early-Schizont:  
 
We have found terms associated to DNA metabolism significantly over-represented in this developmental 
stage: DNA metabolism, DNA replication, DNA replication factor, replisome, replication fork and 
chromosome. Although, the initial analysis of the microarray data suggested that DNA metabolism was 
active from the beginning of the cycle until the early schizont stage, our results seems to extend the 
importance of this process along almost all the schizont stage (evidences in term DNA replication -Biological 
process category- and replisome -Cellular component  category-).  
Metabolism seems to be also very important in this developmental stage as shown by terms such as: 
carboxylic acid metabolism, protein biosynthesis and macromolecular metabolism. Regarding subcellular 
location terms, cell activity has an important location in mitochondria, as shown by the terms: mitochondrion, 
mitochondrial membrane, mitochondrial inner membrane, ion transport and respiratory chain complex III. 
This, together with the over-representation of the terms plastid and apicoplast, supports the theory that in this 
period translation activity moves from nucleus to plastid and mitochondria. 
 
4.2.3 Schizont:  
 
GO terms associated to protein catabolism become significant: protein catabolism, proteolysis and 
peptidolysis, proteasome complex and macromolecule catabolism. Other terms as DNA replication and cell 
proliferation, indicate that cells are in a high division activity stage. At the end of this period the main 



intracellular activities of the parasite are located close to membrane (as indicated by-terms such as membrane, 
host cell membrane and infected host cell surface knob) and much more plasmodium specific terms 
associated to invasion and interaction with host become important (cell communication, cell-cell adhesion, 
response to stimulus, response to biotic stimulus, response to external stimulus, heterophilic cell adhesion, 
defense response, evasion of host defense response, host pathogen interaction and cytoadherence to 
microvasculature) 
More specific terms are in consonance to previous analysis saying that proteases, kinases and actin-myosin 
motors have an important role in invasion (kinase activity, myosin, actin cytoskeleton and peptidase activity) 
The activity also increases in the plastid genome.  
 
4.2.4 Early Ring:  
 
Invasion-specific biological activities still remain significant in the earliest hours of Ring stage as shown by 
GO terms such as: evasion of host cell response and host cell plasma membrane. In the original paper [14] 
the authors alert on the possibility of some contamination from the previous stages affecting to the ring stage, 
so the results obtained for this stage must be taken carefully. Terms such as cell communication, cell invasion, 
response to stimulus, cell adhesion and other similar become visible already in the very first time points of 
the analysis. 
 
5 Conclusions  
 
As we learn more on the functional basis of the cooperative behaviors of groups of genes, systems biology 
approaches gain more importance in our attempt to decipher cell biology relevant questions. Following this, 
the interpretation of genome-scale experiments is starting to focus more in groups of functionally-related 
genes than on the properties of individual genes. Recently, different procedures that make use of functional 
annotations for the direct selection of functionally-related groups of genes have recently been proposed in the 
context of microarray data [21-24, 28]. These procedures use a list of genes ranked by differential gene 
expression and, without imposing any threshold based on the experimental values, study global over- or 
under-expression of blocks of functionally related genes. Nevertheless, its application has been restricted to 
static experimental designs. Here we show how to expand this concept to the functional analysis of a time 
series. This analysis gives dynamic information on continuous behaviors occurring across the series of 
experiments analyzed. By means of the procedure presented in this paper it is easy to understand the 
sequence of functional events taking place in particular moments of the period studied. It is important to 
remark that, for the first time, we have directly addressed the temporal evolution of the biological roles 
fulfilled by the genes, and not the behavior of individual genes, which might (and actually do) contribute to 
more than one functional category. 
As previously mentioned, the use of different GO categories (or other functional terms) allow explaining 
different aspects of the biology of the cell (e.g. the biological roles fulfilled by the genes by using the 
biological process GO category, or where these roles took place, by using the subcellular location GO 
category, etc.). The proposed methodology addresses systems biology-inspired questions on the behavior of 
groups of functionally-related genes. The method provides results with a statistical support. The so obtained 
significance p-values make reference to the functional blocks of genes, but not necessarily to individual 
genes. The method can be applied using any kind of gene annotation beyond the GO terms here used, such as 
KEGG pathways, Interpro domains, etc. 
Summarizing, we have presented a method for the functional analysis of microarrays series with some 
dependence of autocorrelation (time series, dosage series, etc.) The method allows to recover the dynamics 
of the significantly over-represented functional terms along the series. A proper understanding of the biology 
of the cell from the perspective of systems biology need of approaches like the presented here, which tackle 
global functional properties cooperatively carried out by groups of genes. 
The method can easily be applied with a web-based tool, the FatiScan (available at 
http://www.babelomics.org). 
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