
55

Review

www.expert-reviews.com ISSN 1478-9450© 2010 Expert Reviews Ltd10.1586/EPR.09.103

The cell as a network of complexity
Since the completion of the human genome 
sequence in 2004, it has become apparent that 
the number of genes cannot solely explain the 
complexity of higher organisms [1]. A comparison 
between species reveals that, while genome sizes 
across them do not differ very much, the differ-
ence in the number of estimated protein–protein 
interactions (PPIs) increases drastically with the 
difference in complexity among organisms. For 
instance, humans have 22,258 protein-coding 
genes and 650,000 predicted interactions, while 
Caenorhabditis elegans has 20,158 genes but only 
a third of the predicted interactions (the num-
ber of genes was taken from Ensembl genome 
browser release 55 and interactome size predic-
tions taken from Stumpf et al. [2]). This observa-
tion suggests that the complexity in the organ-
isms must have a strong post-transcriptional 
component. Actually, it has been proposed 
that this complexity resides in the interactions 
between elements of the cell [2,3]. The cell can, 
thus, be seen as an intricate network of relation-
ships that determines its activity. This network 
is composed of two types of elements: nodes and 
edges. Nodes represent molecules (e.g., proteins, 

DNA, miRNAs and other noncoding RNAs) or 
metabolites (e.g., lipids, carbohydrates or small 
molecules). The edges represent any type of 
relationship among the elements in the nodes. 
Beyond the elements that compose the network, 
the topology of the relationships linking them 
constitutes the real identity of the network. This 
property is of crucial importance when trying 
to understand the role of the network in a cel-
lular process [4] and cannot be studied under a 
reductionist, gene-based perspective but under 
a holistic view of the cell. 

Graph theory has helped biology tudy these 
networks and has established the basis for their 
description. The first discovery was that biologi-
cal networks are scale-free networks [5] instead 
of random networks. Scale-free networks are 
defined by a distribution of the connections 
degree (defined as the number of connections 
of a node) that approximates to a power law 
P(k) ~ k-g, g being less than 3. This indicates 
that the network has a small number of highly 
connected nodes, called hubs, while most of the 
nodes have a few connections in their neighbor-
ing regions. Indeed, identifying hubs is a hot 
topic in functional analysis [6–9].
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Another important aspect in the description of the biological 
networks is its dynamics [10]. Understanding the dynamics of 
the network implies knowing the kinetics of the relationships 
and its nature (activation or repression) [11], although a more 
detailed description would be possible and necessary in some cases 
(e.g.,  protein post-translational modifications). Although beyond 
the scope of this review, systems biology assigns a major role to 
the dynamics in the characterization of the state of a cell [12,13].

Types of biological networks
From a very broad perspective, many systems, ranging from eco-
systems to cells, including functional processes within the cell, 
can be described in terms of networks. This fact has important 
implications beyond a mere visual representation of them that 
affect the way networks can be studied. A new biology that bor-
rows methodologies from other fields, such as mathematics or 
physics, is emerging in order to study these complex entities.

Within the domain of molecular networks, the term ‘network’ 
refers to different types of relationships between molecules (typi-
cally proteins or genes and, in some cases, chemical compounds). 
Probably, the most relevant types are genetic networks, which 
account for genetic linkages among genes [14], and physical 
networks, which are complex systems in which the molecules 
involved are related by different types of interactions that can 
be physical, functional or regulatory. There are many possible 
examples of networks of this type, such as regulatory networks 
[15], co-expression networks (which account for the dynamics of 
coordinated gene expression) [16], metabolic networks [17], protein 
signaling networks [18] or, more generally, PPI networks, which 
would also include protein complexes [2].

This review focuses on physical networks; more precisely, we 
analyze the novel methodologies that exploit prior knowledge 
from PPI networks and curated pathways. Special stress is made 
on methods that apply such knowledge into the context of gene 
dynamics in transcriptomic studies to obtain modules of genes 
with significant impact over specific phenotypes.

Evolution of functional genomic methodologies
The availability and popularization of high-throughput technolo-
gies has paved the way for the study of different aspects of the 
cell behavior, such as gene-expression dynamics, PPIs, regulation, 
epigenetics and genetic mutations, at a genome-wide scale in an 
amazingly short time. Functional genomics is a field of molecular 
biology that makes use of the wealth of ‘omic’ data produced by 
these technologies to understand cell functionality by studying 
the relationships among the cell’s molecular components.

Microarrays can be considered the most paradigmatic among the 
high-throughput technologies used in functional genomics. Many 
of the caveats for this methodology are common to almost any other 
high-throughput technology. Since the first proposals for the analysis 
of whole-genome gene-expression data obtained from microarrays 
in the late 1990s [19], this technology has matured through a series 
of periods in which different interests were dominating. Although 
microarray experiments can be used to address a large variety of 
biological problems, scientific literature on this subject concentrates 

on three main types of objectives: ‘class comparison’, ‘class predic-
tion’ and ‘class discovery’ [20]. The functional interpretation of the 
experiments is typically made on the basis of those genes selected as 
relevant by tests or methods that address the above objectives. For 
this purpose, predefined modules of genes (gene sets) related among 
them by any biological property (i.e., common function, regulation 
or chromosomal location) are used. Functional enrichment methods 
are used to find if one or more of these gene modules is significantly 
over-represented among the relevant genes selected in the experi-
ment [21,22]. Over-representation of a given gene module indicate that 
genes with a particular property have been activated or deactivated 
in the experiment. There are a number of available tools [23–25] that 
use different functional definitions to build up gene modules, such as 
gene ontology (GO) terms [26] or the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways [27]. A large number of functional 
enrichment methods with different acceptation by the scientific 
community [101] have been proposed [21]. 

However, functional enrichment methods present some limita-
tions associated with the imposition of a previous threshold [28] 
to the genes analyzed. Thus, genes that are relevant in a genomic 
experiment, in which functional enrichment is further studied, are 
selected exclusively on the basis of a statistic test based on experimen-
tal measurements (e.g., gene-expression intensities). The gene selec-
tion process applied in this first step does not take into account that 
these genes are acting cooperatively in the cell and, consequently, 
their behavior must be coupled to some extent. In this selection 
process, under the unrealistic simplification of independence among 
gene behaviors, much information is lost. The biological properties 
(e.g., function and regulation) that define the gene modules used in 
the functional enrichment test entails dependences [16,29,30], which 
are ignored and mostly lost by the application of such a threshold. 
Therefore, there is a paradoxical incongruence in the way functional 
hypotheses are tested by the functional enrichment approach, whose 
practical consequence is a considerable loss of statistical power [31].

Actually, it is a long-recognized fact that genes with similar over-
all expression often share similar functions [19,29,32]. This observa-
tion is consistent with the hypothesis of modular-behaving gene 
programs, where modules of genes are activated in a coordinated 
way to carry out functions. Under this scenario, a different class of 
hypothesis based on modules of functionally related genes rather 
than on individual genes can be tested. The activity of such mod-
ules can be studied and tested by analyzing the joint behaviors of 
their components. In the simplest formulation, lists of genes ranked 
by a measurement derived from a given experiment (e.g., differ-
ential expression when comparing cases and healthy controls) can 
be built. Then, the distribution of gene modules across such lists 
can be studied without the necessity of imposing any arbitrary 
threshold on the measurement. Each functional module related 
to the experiment and accounting for the trait studied will, con-
sequently, be found associated to the extremes of the ranked list 
with highest probability. 

Different methods have been proposed for this purpose such as 
the gene set enrichment analysis (GSEA) [33,34] or the significance 
analysis of function and expression (SAFE) [35], that use a nonpara-
metrical version of a Kolmogorov–Smirnov test. Other strategies are 
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also possible, such as the direct analysis of functional terms weighted 
with experimental data [36], or model-based methods [37]. With 
similar accuracy, although conceptually simpler, other methods 
have also been proposed, such as the parametrical counterpart of 
the GSEA, the parametric analysis of gene set enrichment (PAGE) 
[38] or the segmentation test, Fatiscan [39,40]. Revisions on gene set 
methods can be found in different reviews [31,41,42].

The methods mentioned previously consider gene modules 
as categorical, unstructured entities. This abstraction, although 
operatively useful, is far from the reality. Proteins, and by exten-
sion their templates (genes), form an intricate network of relation-
ships where genes, proteins and other metabolites are involved 
[43,44]. In this network of life, every element has a specific role 
determined by their position. A clear example of structured func-
tional classes are those defined by databases, such as KEGG [45], 
BioCarta, Reactome [46], WikiPathways or the Pathway Interaction 
Database [47]; initiatives that are making an invaluable effort to 
compile of knowledge on metabolic and signaling pathways. Other 
example are the PPIs datasets (ppis) produced by high-throughput 
techniques, such as yeast two hybrid (Y2H), tandem affinity puri-
fication (TAP) and high-throughput mass spectrometry (MS). 
Reviews on these and related methodologies can be found in [48,49]. 
They represent binary physical interactions between proteins that 
taken in the right perspective are seen as a global network, known 
as the interactome.

Novel methodologies in functional genomics
Nowadays there is no better approximation to represent complex 
systems, such as multigenic diseases, than the network perspec-
tive [50]. Thus, new methods are necessary to deal with this new 
challenge. This review summarizes the new achievements in this 
field with a focus in methodologies that study the transcriptome. 
Strategies able to extract and interpret the relevant networks and 
pathways with an accurate treatment of their features from the 
data produced by genome-scale experiments will also be discussed.

The main difference between curated pathways, such as KEGG 
or BioCarta, with respect to PPI networks, is that, while the descrip-
tion of the former represent directed interactions (e.g., A activates 
B) the relationships are normally undirected for the latter (e.g., A 
and B interact). Also, for the connected character of the PPI net-
work, many, if not all, of the nodes are linked directly or indirectly 
through other nodes. In this respect, physical PPI networks consti-
tute a more accurate description of the functional interoperability of 
the molecules in the cell than the conventional functional modules, 
which describe functions as watertight compartments. In fact, this 
vision is changing, and there are recent descriptions of complex 
functionalities, such as metabolism, in which classical pathways 
are substituted by a complex metabolic network [17,51]. Certainly, 
subnetworks within the global network can play specific roles and 
different methods with the aim to extract such submodules, which 
will be commented on later, have been proposed.

Another difference between PPI networks and other conven-
tional functional modules is the way that they are defined. While 
conventional modules are typically the result of a manual curation 
process, the PPI networks are obtained in different experiments 

(e.g., Y2H and MS), which define physical relationships among 
pairs of proteins. A consequence of this fact is that the relation-
ships that define the topology of the network itself do not allow 
an easy delimitation of submodules within.

The classification of the methods that exploit the information on 
the functional or physical relationships between genes or proteins 
to analyze omics experiments (e.g., gene-expression or genome-
wide genotyping) is not an easy task. We have used a naive separa-
tion between methods oriented to pathways or to PPI networks, 
which constitutes the most comprehensible classification for the 
end user from an operative standpoint. 

Methods applied to pathways from curated repositories
Contrary to PPI data, metabolic and signaling pathways from 
curated repositories have been used extensively in the functional 
profiling of genome-scale experiments. Together with GO terms, 
they are by far the most used functional definitions in the con-
text of the conventional functional enrichment approaches, as 
well as in gene-set analyses (both discussed previously). Under 
such approaches, all the genes annotated within the pathways are 
considered with the same weight, and the internal structure is 
dismissed. However, under the systems biology perspective, the 
topology of the pathway is a much more important aspect than the 
simple list of individual components. A pathway can be activated 
or deactivated depending on the relative relationships among the 
genes that are deregulated. For instance, in a signaling pathway, 
the signal transmitted from input to output genes can be drasti-
cally affected if the genes located between them are deregulated. 
The relative position of up- or down-regulated genes is a factor 
that cannot be underestimated when identifying pathways related 
to traits, such as disease phenotypes. 

In any case, it is obvious that considering functional classes as 
discrete, unstructured entities composed by members with an equal 
weight, was quite an unrealistic assumption, which reduced the 
statistical power in any testing framework. Thus, a new family of 
methods was proposed that could be called core-based algorithms, 
as the main concept introduced is that not all genes contribute in a 
similar manner to the pathway activity in a determined cell condi-
tion [52]. Through different flavors, these algorithms search for the 
set (core) of the genes within the pathway that more significantly 
account for its functionality. Tomfohr et al. proposed an algo-
rithm that translates gene-expression levels into pathway-activity 
levels derived from singular-value decomposition (SVD) [53]. For 
each of the pathways analyzed, they generated a gene-expression 
matrix and took the first eigenvector that is claimed to be rep-
resentative of the activity of the pathway. In a similar approach, 
condition-responsive genes (CORGs) could be identified and used 
in a second step to discriminate among samples in a microarray 
experiment [54]. Eigenvectors are also used in other approaches to 
remove high-frequency components, mostly composed by noise, 
from the networks analyzed [55]. This idea of existing cores of genes 
within functional modules, which contribute to their detection by 
functional profiling methods, owing to their internal coexpression, 
was applied by Montaner et al. to generate a coherence index to be 
used for measuring functional module coregulation in GO terms 
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and KEGG pathways [52]. Interestingly, they found that only 30% 
of the modules defined by GO terms and 57% of the modules 
defined by KEGG pathways display an internal correlation higher 
than that expected by chance.

The leitmotiv in these approaches is the removal of different types 
of noise within the pathways, especially redundancy and genes not 
relevant for the activity of the pathway under the studied condition 
(e.g., genes not expressed in the tissue under study). Although these 
approaches produce comparatively better results than their gene 
set of functional enrichment counterparts, they still do not use the 
information of the topological features of the pathways.

Several solutions attempted to go beyond the mere cleansing 
of the pathways by taking into account, from different perspec-
tives, the internal structure of the pathways. They belong to 
‘topological-based algorithms’. In early attempts, prior biological 
information was introduced by means of distances between the 
genes within the pathways in order to correct their correlation 
within microarray experiments. Thus, a combined measurement 
that includes co-expression and distance according to the topol-
ogy of the pathways has been used to improve the performance 
of coclustering methods [56] or in supervised studies, using meta-
bolic pathways [57]. Other more sophisticated algorithms use the 
network information to correct gene expression measurements by 
more complex algorithms, such as Markov random field [58,59].

More recently, at least three novel approaches are the future 
directions for this type of study. Thomas et al. present a set of 
algorithms with a wide scope, both in the hypothesis tested and in 
the type of data they can deal with, but similar in their approach 
to the problem [60]. Of particular interest is SEPEA_NT1, which 
compares the genes within every pathway to the rest of the genes 
in the system. For the genes in a pathway, the algorithm calculates 
two scores: the heavy-ends rule (HER), which takes higher values 
when the genes associated to a class (e.g., disease) are in the termi-
nal part of a pathway, and the distance rule (DR), which increases 
the weight of the genes associated to the class if they are close to 
each other in the pathway. These two scores are combined and the 
significant pathways associated to the case of study are extracted 
using a permutation test.

Efroni et al. identified signaling pathways associated to cancer 
stages by determining two scores for every pathway: a consistency 
score and an activity score [61]. The consistency score identifies 
those pathways whose genes in input and output positions are 
consistent in terms of expression. Thus, the state of every gene (up 
or down) is estimated by fitting their expression distribution to a 
mixture of two g distributions that represent the active and inac-
tive states over the whole experiment. Then, for every interaction 
the probability of occurrence is calculated by a joint probability of 
the input and output genes. The global consistency of a pathway 
is given by the average of the consistency of every interaction by 
comparing the probability of the output genes and its real state. 
The pathway activity score is the average of all the probabilities 
for the interactions in a pathway. The result is the transforma-
tion of gene-expression values into a matrix where every pathway 
shows its two scores over the samples. Finally, the algorithm detects 
pathways that are able to discriminate between phenotypic classes.

Another related algorithm is the so-called impact analysis [62,63]. 
This approach combines elements from classical enrichment anal-
ysis with topological measurements, calculating two independent 
probabilities: the probability of having differentially expressed 
genes in a pathway (P

NDE
), and the probability of the pathway of 

being deregulated, estimated as the propagation of the expression 
changes of each gene along the pathway topology (P

PERT
). P

PERT 
is 

calculated over the perturbation factor (PF) of every gene in the 
pathway. This PF takes into account the expression change of a 
gene and the PFs of the genes that are up- and down-stream in the 
cascade. It also introduces the concept of activation and inhibi-
tion in the calculation of the PF. A bootstrap procedure is used to 
assess the significance of the observed total pathway perturbation.

Obviously, the more detailed the description of the biology 
behind the model tested, the better. Thus, the last two pro-
posals seem to represent the most sophisticated way to exploit 
the information available on pathway topologies to understand 
the functional consequences of the changes in gene-expression 
levels [61,62]. It is obvious that the application of such methods 
requires knowledge of the internal structure of the entities tested 
(e.g., KEGG pathways, BioCarta and Reactome).

Methods applied to PPI networks
Protein–protein interactions play a central role at almost every 
level of cell activity – they are involved in the structure of 
organelles (structural proteins), transport machinery (nuclear 
pore importins), response to a stimulus (signaling cascades), 
regulation of gene expression (transcription factors), protein 
modification (kinases) and many other processes. The inference 
and proper use of this type of information are of crucial impor-
tance to understand cell behavior. We review the more relevant 
methodologies that have been proposed for the identification of 
phenotype-responsive PPI subnetworks.

A subnetwork is a subset of the whole network (interactome). 
Owing to their putative functional role, subnetworks with inter-
nal node connectivity higher than its connectivity to other nodes 
are of special interest. Many attempts have been made to explore 
the whole interactome in order to detect such subnetworks. Most 
of the approaches used were based on the application of cluster-
ing methods to weighted matrices that describe the network of 
PPIs. For example, the number of experiments that support each 
interaction has been used as the value for the corresponding entry 
of the PPI matrix [64]. Other authors use the shortest paths among 
pairs of nodes to measure the relationship among them [65] or 
topological features of the network, such as the ‘betweeness’ [66,67]. 
Central nodes, with a high betweenness, can help to define the 
boundaries of the subnetworks because many of the shortest paths 
pass through them, and the action of removing them from the 
network would lead to the disconnection of subnetworks. Other 
approaches make use of other properties, such as the conservation 
of subnetworks across species [68]. 

The subnetworks obtained by these methodologies constitute 
gene modules that may be enriched in proteins with related biologi-
cal functionalities, as indicated by its significant enrichment in GO 
terms [69] or by its co-occurrence within the literature [67]. Indeed, 
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it has also been shown that there are subnetworks associated to 
diseases [50,70–72]. It has also been reported that genes deregulated 
in cancer confer fragility to the interactome network [73,74]. The 
analysis of the human interactome reported that proteins encoded 
by genes mutated in inherited genetic disorders are likely to interact 
with proteins known to cause similar disorders [71].

Nevertheless the interactome obtained from high-throughput 
techniques conforms with an abstract scaffold that describes all the 
possible PPIs, but it does not provide information about particular 
conditions, cell developmental stage or cell type in which a par-
ticular PPI occurs (if any). To infer a case-specific interactome, it is 
necessary to integrate other types of data that provide information 
that allows inferring the active PPIs at a particular condition.

As in conventional functional profiling analyses based on cate
gorical, unstructured functional classes (e.g., GO terms) PPI data 
can be used for the functional interpretation of genome-wide exper-
iments. The aim is to extract the gene modules, defined as subnet-
works, which are associated to a particular cell phenotype beyond 
the random expectation. A few approaches have been proposed to 
statistically test such associations, which are now described.

Extracting subnetworks from genomic experiments 
Actually, the majority of the algorithms that have been proposed in 
this field use different scoring systems to measure the association of 
subnetworks to the differences between two experimental condi-
tions in a transcriptomic experiment. In an early paper in 2002, 
Ideker et al. laid the foundations for this type of approach [75]. The 
authors introduced a scoring-based measure of groups of genes, gen-
erated using the interactome as scaffold. All possible subnetworks 
are scored based on their differential expression over two or more 
classes in a microarray experiment before searching for the highest-
scoring subnetwork by a procedure based on simulated annealing. 
Other different approaches using distinct scoring procedures have 
been proposed [76,77].

An interesting approach to evaluate the association of subnetworks 
to a determined disease through their enrichment in pre-established 
gene signatures already associated to the disease has recently been 
proposed [78]. The gene signatures are defined by differential expres-
sion tests. The relative expression of the genes in the signature is 
mapped to the global network of PPIs. From the combination of the 
interactomic and transcriptomic information, a high-scoring matrix 
(HSM) is extracted as a subnetwork that is highly transcriptionally 
affected in the disease. Finally, the hypothesis that a particular gene 
signature is enriched into the subnetwork is tested. In brief, PPI 
subnetworks are used as gene modules in a conventional functional 
enrichment analysis, although the topological relationships among 
the proteins in the network are not exploited.

Other proposals followed the same rationale, although apply-
ing an edge-based algorithm [79]. In this case, a greedy search 
is performed through the interactome, taking proteins that are 
known to be associated to the disease under study as seeds. The 
subnetworks found are then evaluated according to an aggregative 
and normalized score of their edges. The score for each edge is 
calculated taking into account the correlation in the expression 
measurements of the connected proteins and their individual 

differential expression over the classes compared in the microar-
ray experiment. Then, the highest-scoring subnetwork is found 
by a similar procedure as that used by Ideker et al. [75]. Finally, 
the authors evaluated if the subnetworks were enriched in any 
functional class comparing its proteins annotation to the back-
ground annotations. This final evaluation of the subnetworks 
has become popular [67,69]. There are even specific tools for doing 
this task, such as Bingo [80], a Java applet that can be integrated 
into the Cytoscape visualization tool [81], which performs GO 
enrichment analysis to the nodes that configure subnetworks. 
Although highly informative, in the case of negative results, this 
test does not guarantee that the studied subnetwork is not a func-
tional module, owing to the lack of annotation. In fact, functional 
analysis using PPIs does not always overlap with functional profil-
ing counterparts using biologically relevant terms, such as GO 
or KEGG [82,83].

Similarly, other authors proposed detection of the active sub
networks, taking as seeds proteins with more than five inter
actions [84]. They score the subnetworks by using a multivariate 
analysis of variance over the gene-expression data of the phe-
notype under study. The sequence of aggregation of nodes is 
formed according to a threshold based on the score performance. 
Once the candidate subnetworks are extracted, a permutation test 
evaluates their significance.

Alternatively, Minguez et al. proposed a method that uses the 
structural features of the subnetworks as a statistical criterion for 
its evaluation [85]. The authors generate subnetworks from lists of 
differentially expressed genes among the experimental conditions 
compared. This list of genes can, in fact, be preselected by any other 
criteria, given that the method is independent from this selection 
process. From this list, they derive the associated minimal con-
nected network (MCN), which is the minimal network that con-
nects all the nodes in the list. The shortest paths among all the pairs 
of nodes in the list are calculated using the Dijkstra algorithm [86]. 
The paths that connect two proteins either directly or through an 
additional protein (initially not contained in the list) are introduced 
into the MCN. Indeed, the inclusion of proteins not contained in 
the list constitutes an interesting feature of this proposal. Actually, 
it has been reported that proteins not preselected by expression 
profiling experiments, and detected because they connected two or 
more preselected proteins, were related to diseases [78,87,88]. 

Expert commentary
Functional genomics is a fast-growing discipline. As systems biol-
ogy viewpoints are gaining influence, the new methodologies 
are closer to a more realistic management of the biological mod-
ules, and this is reflected in the evolution of the methodologies 
reviewed in this manuscript.

For curated signaling pathways, studies that take into account the 
topology of the pathways point to a promising direction [60,61,63]. 
The well-defined structure and annotation of these type of data 
represent an excellent starting point as proof-of-concept for new 
algorithms. The methods to be developed in this area must take 
into account some of the elements these three methods have 
separately, such as:
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•	 Inclusion of topological information with special attention in 
input and output genes;

•	 Incorporation of the direction and nature of the interactions 
(activations and inhibitions);

•	 Evaluation of the consistency of the expression data with the 
network topology;

•	 Proper evaluation of the pathways to check their statistical 
significance.

An obvious step forward could be to increase the scope of stud-
ies that exploit the topological relationships between proteins in 
pathways. Thus, initiatives that attempt to generate global curated 
pathways provide a standpoint for these future generalization 
efforts [17,51]. In a recent imaginative attempt, the authors gener-
ated a novel entity that represents a network of pathways where 
the nodes are the pathways themselves and the edges are defined 
by their shared genes [89].

Working with PPI networks is far more difficult than dealing 
with curated pathways – the data are intrinsically noisy and the net-
work has not a predefined structure of subnetworks. On the other 
hand, it constitutes an excellent substrate for a more exploratory 
biology, where new modules of genes can be discovered beyond the 
already known curated pathways and associated to phenotypes, 
such as diseases. As a corollary, there are at least two aspects to 
consider when approaching the development of methodologies to 
deal with omics data in the context of networks. The first is that the 
topology of the network has to be taken into account. This feature 
can provide tools to study the networks (graph theory), as well as 
ways to classify them and their constituting elements (e.g., hubs 
and their implications in diseases). The second important aspect to 
be considered is the proper statistical evaluation of the relationship 
between the subnetwork extracted and the phenotype under study.

Five-year view
One of the practical consequences of the introduction of systems 
biology concepts in the area of functional genomics is the use of 
networks to describe different aspects of the cell biology. This 
has constituted a revolution with long-term implications that are 
difficult to predict. The biological systems (diseases or particular 
cellular processes) will no longer be seen as static, isolated enti-
ties. Rather, a vision of them as part of a global network of inter
actions with no limits in its scope, from molecules to organisms, 
will gradually gain acceptance. 

Biology has been climbing from a reductionist approach, based 
on the study of isolated genes, to a more holistic approach based 
on pathways, which constitute an important advancement in the 
knowledge of the biological phenomena. Pathways, however, are 
only one step toward the whole description of the cell biology. 
The perspectives for the future of functional genomics are clearly 
associated with the development of new methodologies able to 
deal with these new challenges. New methods should surpass the 
present scenario, in which the network is divided into pathways, 
and provide more general models to study realistic situations 
in which global metabolic networks or systems, including pro-
teins, lipids, carbohydrates and drugs, could be studied easily. 
An example of a visionary proposal with clear implications in 
biomedicine is a recent study of networks of drug–drug rela-
tionships to predict new targets for a drug through side-effect 
similarities [90]. Another interesting viewpoint is the network of 
disease genes linked by known disorder–gene associations, which 
constitutes a useful tool for extracting links between diseases and 
by extension between their treatments [91].

In parallel with the development of new strategies for explor-
ing this new information, the quality of the data we use to gener-
ate such information also need to be improved. The implications 
for this include the development of high-throughput techniques 
able to generate more accurate PPIs, and protein and other 
metabolites interactions, but also a better annotation of these 
interactions. There is still a big gap between curated pathways 
and network data coming from high-throughput experiments, 
which needs to be filled. Some recent works exemplify the gen-
eration of pathways from PPI data and describe the strategies 
followed to obtain a complete map of the interactome of model 
species [92,93].

Financial & competing interest disclosure
This work is supported by grants from project BIO BIO2008-04212 from 
the Spanish Ministry of Science and Innovation. The National Institute of 
Bioinformatics (www.inab.org), is a platform of Genoma España. The 
CIBER de Enfermedades Raras is an initiative of the ISCIII. This work is 
also partly supported by a grant (RD06/0020/1019) from Red Temática de 
Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos 
III (ISCIII), Spanish Ministry of Science and Innovation. The authors have 
no other relevant affiliations or financial involvement with any organization 
or entity with a financial interest in or financial conflict with the subject 
matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Key issues

•	 As high-throughput techniques are producing massive amounts of data, the challenge now resides in filling the gap between data 
and information.

•	 Almost all biological systems can be described in terms of networks setting up the new basics of a new biology that need to be able to 
accurately describe these complex systems.

•	 Data integration is of crucial importance when approaching the description of cell phenotypes.

•	 Both, curated pathways (metabolic and signaling) and protein–protein interaction networks represent an excellent scaffold for the 
study of complex traits, including diseases.

•	 New methodologies need to be developed for the correct treatment of networks within this context.
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